

JASD Series AC Servo Drives User's Manual

Address: Floor2,Building A,Hongwei Industrial Zone No.6, Liuxian 2rd Road, Bao'an District, Shenzhen.China Phone: 0755-26509689 26502268 Fax: 0755-26509289 E- mail:info@jmc-motion.com Http: //www.jmc-motion.com

Preamble

All contents and copyright of this manual belong to Shenzhen Just Motion Control Electromechanics Co., Ltd..Without the permission of Shenzhen Just Motion Control Electromechanics Co., Ltd any unit or individual shall not copy,reprint or quote in any way.There is no warranty, expression of position or other implication in any form in this manual.If there is any product information mentioned in this manual, the direct or indirect outflow of information will lead to loss of benefits.Shenzhen Just Motion Control Electromechanics Co., Ltd. and its employees do not assume any responsibility.In addition, the products mentioned in this manual are for reference only. If the content is updated without prior notice.

All rights reserved.

Shenzhen Just Motion Control Electromechanics Co., Ltd.

Version	Author	Approval
V1. 3	R & D	R & D
	Department	Department

Contents

Preamble	1
Contents	2
Chapter 1 Safety Precautions	6
1.1 Precautions for reception and installation	6
1.2 Precautions for Wirings	6
1.3 Precautions for operation	7
1.4 Precautions for maintenance and inspection	8
Chapter 2 Product Introduction	9
2.1 Servo Driver	9
2.1.1 Introduction	9
2.1.2 Main characteristics	9
2.1.3 Driver Specifications	-10
2.1.4 Servo driver model description and nameplate conter	nt13
2.2 Servo motor	-14
2.2.1 Introduction	-14
2.2.2 Main features	-14
2.2.3 Servo motor model description and nameplate content	nt15
2.3 Servo control system and Main power circuit connection	-17
2.3.1 Wiring diagram of servo control system	-17
2.3.2 loop-connectivity main power	-18
Chapter 3 Port usage and cabling	-19
3.1 Distribution of ports in Servo-drive	-19
3.2 Description of servo driver CN1 control port	-20
3.2.1 Definition of CN1 control port	-20
3.2.2 Connection instructions for CN1 control ports	-22
3.3 Description of the CN2 encoder port of the driver	-24
3.3.1 Description of SCSI-20P encoder connector	-24

3.3.2 Description of 1394-6P encoder connector	25
3.4 Description of the driver's CN3/CN4 port	26
3.5 Description of the driver's CN5 port	27
3.6 Port description of power supply and motor power line	27
Chapter 4 Installation instructions	29
4.1 Installation dimension	29
AC servo driver with 2kW power (unit: mm)	31
AC servo driver with 3KW power (nuit: mm)	32
4.2 Install the environment used	33
Chapter 5 Panel displays instructions and Settings	34
5.1 The instructions of the panel functions	34
5.2 Operation mode switching process	35
5.3 Status display	36
5.4 Write and save method for parameter setting	37
Chapter 6 control mode and setting	38
6.1 Position control	38
6.1.1 Position control wiring diagram	38
6.1.2 Position control wiring diagram	39
6.1.3 Description of position control mode parameters	40
6.1.4 Example of electronic gear ratio calculation	41
6.2 speed control	43
6.2.1 Speed control wiring diagram	44
6.2.2 Description of speed control mode parameters	45
6.3 torque control	47
6.3.1 Torque control wiring diagram	47
6.3.2 Description of torque control mode parameters	48
Chapter 7 trial operation and parameter adjustment	50
7.1 test run	50

7.1.1 Pre operation detection	50
7.1.2 No-load test run	51
7.2 parameter adjustment	53
7.3 Gain tuning manually	55
7.3.1 Basic parameter	55
7.3.2 Gain switching	59
7.3.3 Feed-forward function	60
7.3.4 Disturbance observer	61
7.3.5 Resonance suppression	62
Chapter 8 Parameter and Function	67
8.1 Parameter list	67
8.2 Parameter Description	82
8.2.1 P00-XX motor and driver parameter	82
8.2.2 P01-xx Major control parameter	85
8.2.3 P02-xx Gain assorted parameter	88
8.2.4 P03-xx Position parameters	94
8.2.5 PO4-xx Speed parameter	97
8.2.6 P05-xx Torque parameter	99
8.2.7 P06-xx I/O Parameter	101
8.2.8 P08-xx High function Parameter	105
8.3 List of surveillance items	108
8.4 Auxiliary function	110
Chapter 9 Fault Analysis and Treatment	114
9.1 Failure alarm information list	114
9.2 Cause and treatment of fault alarm	116
Chapter 10 Communication Settings	124
10.1 Modbus communication parameter setting	124
10.2 Modbus communication support read and write part	rameter125

settings		125
Chapter 11 Specia	l Function Instructions	128
11.1 Absolute	e encoder is used	128
11.1.1	Functional description	128
11.1.2	Based on MODBUS communication servo basic	
Settings	and instructions	128
11.1.3	Based on MODBUS communication absolute data	
address		129
11.1.4	Absolute encoder related alarm processing	129
11.1.5	Absolute encoder battery replacement	130

Chapter 1 Safety Precautions

The following explanations are for things that must be observed in order to prevent harm to people and damage to property.

Misuses that could result in harm or damage are shown as follows, classified according to the degree of potential harm or damage.

Danger	Indicates great possibility of death or serious injury.
Caution	Indicates the possibility of injury or property damage.
0	Indicates something that must not be done.

1.1 Precautions for reception and installation

Danger: 1、 Please match the driver and motor according to the specified way, otherwise it will cause equipment damage or fire.

2 It is forbidden to use in places with serious water vapor, combustible gas, corrosive gas, etc.
Otherwise it will cause electric shock, personal injury, fire and equipment damage.

1.2 Precautions for Wirings

Danger: 1, Please do not connect the drive power supply to the motor output terminals (U, V, W).

Otherwise, the driver will be damaged, which may cause personal injury or fire.

 Please make sure that the connecting wires of power supply and motor output terminals are locked, otherwise it may cause sparking and fire.

- 3、 Please properly select the power cord and motor power extension cord correctly to avoid fire caused by insufficient current bearing capacity of the wire.
- 4、 Please make sure that ground the earth terminal of the motor and driver shell without fail.Bad grounding may cause electric shock.

Caution: 1. Please do not tie the motor power line to the signal line or pass through the same pipe to prevent

interference to the signal.

- Please use multi-stranded wire with shielding for signal line and encoder feedback extension line to enhance anti-interference ability.
- 3、 After the driver is off power, there is still high voltage inside. Please do not touch the power terminal for 5 minutes, and make sure the discharge indicator is off before operating.
- 4. Before power on, please make sure that the wiring is connected correctly.

1.3 Precautions for operation

- Danger: 1, Before installation of the equipment, please first no-load trial run to avoid accidents.
 - Do not allow untrained personnel to operate, to prevent equipment damage and personnel injury caused by the wrong operation.
 - 3、 During normal operation, please do not touch the radiator and its interior of the driver with your hands to prevent high temperature scalding or electric shock.

Caution: 1. Please adjust the parameters of the driver before long-term test to prevent the poor use of the driver and equipment.

- Please make sure that the device start, emergency stop, close and other switches are effective before running the device.
- 3、 Please do not turn on and off the power repeatedly.

1.4 Precautions for maintenance and inspection

- S: 1. It is forbidden to touch the inside of the drive or motor during operation to avoid electric shock.
 - Within 5 minutes after the power is turned off, do not touch the power supply and power terminal to prevent electric shock.
 - 3. Do not change the connection line when the power is on, in case of electric shock or injury.
 - 4. Must be operated and maintained by trained professionals.
 - 5. Do not disassemble and repair except by our staff.

Chapter 2 Product Introduction

2.1 Servo Driver

2.1.1 Introduction

JASD series universal servo driver is a high performance AC servo unit developed by JMC. The servo driver of this series use advanced DSP chip for motor control, large-scale Field Programmable Gate Array (FPGA) and IPM power module, which is characterized by small size, high integration, stable performance and reliable protection. There are abundant digital and analog I/O interfaces. It can be used with a variety of upper computer devices, and support MODBUS communication protocol to facilitate networking. It can realize the full digital control of position, speed and torque precision through the optimized PID control algorithm. It has the advantages of high precision and quick response. At the same time, the driver supports 2500 line incremental encoder and 17-bit and 20-bit high precision absolute encoder motor, to meet different customer performance requirements. Products are widely used in CNC machine tools, printing and packaging machinery, textile machinery, robots, automatic production lines and other automation fields.

2.1.2 Main characteristics

- 1. Using DSP+FPGA dual chip platform and optimized current loop design, the driver has the characteristics of high dynamic response, extremely short setting time, smooth operation and small vibration when stopping.
- 2. With automatic gain adjustment module, the user can choose the rigidity level according to the demand.
- The built-in FIR filter and the multiple sets of notch filter, can automatically recognize and suppress the mechanical vibration.
- 4. The built-in disturbance torque observer, makes the drive with a strong ability to resist external disturbance.
- 5. There are a variety of control modes to choose, position control, velocity control, torque control, can switch various control modes.
- Location input pulse frequency up to 4 MHZ, support pulse + direction, orthogonal pulse, double pulse position command a variety of ways.
- It has RS485 interface, supporting Modbus communication, and Multi-ring absolute encoder with memory function. It can be flexibly applied to manipulator and other industries.

- Programmable 8-way input and 5-way output port available, users can define input, output requirements via settings, flexible application.
- 9. Support incremental encoder and 17bits, 20bits, 23bits high precision absolute encoder.
- 10. Complete protection functions including overvoltage, undervoltage, overspeeding, overloading, Position deviation too large, encoder errors, etc. And it can remember 8 groups of historical fault information.
- 11. Rich monitoring items, users can choose wanted items to test running state.
- 12. Drive communicates with PC via connecting RS232 port to have easy, quick debug servo drive system.

2.1.3 Driver Specifications

- 1、 Electrical specifications
- a) Single phase 220V servo drive

Model JASD***2-20B	200	400	750	1500
Single Phase Continuous	1.9	3.2	6.7	8.8
Input Current (Arms)				
Continuous Output	2.1	2.8	5.5	8
Current(Arms)				
Max Output	5.8	9.6	16.9	19
Current(Arms)				
Main Circuit Power Supply	Single phase AC180-240V,50/60Hz			
Control Circuit Power	Single phase AC180-240V,50/60Hz			
Supply				
Brake Handling	External brake resistance Built in brake resistance			
Function				

b) 3-phase 220V servo drive

Model JASD***2-20B	750	1500	2000	3000
3-Phase Continuous Input	3.6	6	8.7	11
Current (Arms)				
Continuous Output	5.5	8	14	20

Current(Arms)				
Max Output	16.9	19	33	50
Current(Arms)				
Main Circuit Power Supply	3-phase AC180-240V,50/60Hz			
Control Circuit Power	Single phase AC180-240V, 50/60Hz			
Supply				
Brake Handling	Built in brake resistance			
Function				

2 Basic Specifications

Project		Description
Control method		Single/3-phase full-wave rectifier
		IGBT PWM sinusoidal wave current drive
Feedback		Incremental encoder
		Absolute encoder
	temperature	Work: $0\sim55^{\circ}$ C Storage: $-25\sim85^{\circ}$ C
	humidity	Work: 10%~90%
	altitude	<1000m.When it is higher than 1000m, it shall be
Freedoment		derated according to GB/T 3859.2-93
Environment		Protection level: IP10, cleanliness: 2
	protection level	Non-corrosive and non-combustible gas
		No oil and water splash
		Environment with less dust, salt and metal powder
	speed regulate area	1:5000
		±0.01%: External load fluctuation 0 \sim 100%
	steady speed accuracy	±0.01%: power input change ±10% (220V)
Function		±0.1%: ambient temperature ±25 $^\circ\!$
	velocity response	1200Hz
	frequency	
	torque control	±2%
	accuracy	

	frequency-dividing	A phase, B phase and C phase: linear driving output.	
	pulse output of	frequency-dividing pulse output number: can be set at	
	encoder	will.	
		point: 8	
		Function: Servo ON $\$ Erase warning the warning $\$	
		Forward overpass signal input, Reverse overpass signal	
		input. Control mode switching. P action instruction	
		input、Positive side external torque limit、Reverse side	
	input signal	external torque limit ς Gain switching input ς Zero	
	input signai	position fixed input. Instruction pulse inhibit input.	
Input/Output		Encoder absolute value data required input 1. Internal	
signal		set speed switching input 2. Internal set speed	
		switching input3、Position instruction clear input、Check	
		out input of magnetic pole $\$ Switch input of instruction	
		pulse input multiplier	
		point: 5	
		Function: Alarm output, Band-type brake open output,	
	output signal	Servo ready for output ${\bf \nabla}$ Position complete output ${\bf \nabla}$	
		Position close output \ensuremath{v} Uniform speed output \ensuremath{v} Motor	
		zero speed output \checkmark Torque limit detection output \backsim	
		Speed limit detection output \ensuremath{v} Warning output \ensuremath{v}	
		instruction pulse input multiplier switching output	
Displa	y function	High voltage power indicator lamp, 6-digit 8-segment	
		LED.	
Communication	RS485	MODBUS protocol is supported.	
function		Axis address: by parameter setting	
TUNCTION	RS232	Connect PC for debugging	
Regeneration treatm	nent	Built-in regenerative resistor or external regenerative	
		resistor.	
Protection function		Overvoltage, undervoltage, overcurrent, overload, etc.	

2.1.4 Servo driver model description and nameplate content

1. Model description:

2 Nameplate content description

2.2 Servo motor

2.2.1 Introduction

JASM servo motors are high rotational speed, high precision servo motors developed by JMC to meet the requirements of modern automatic control. This series of servo motors can make the control speed and position accuracy very accurate, and can convert the voltage signal into torque and speed to drive the control object. This series of servo motor rotor speed is controlled by the input signal and can respond quickly. It in the automatic control system, is used as actuators, and the advantages of small electrical and mechanical time constant, high linearity, initiating character such as voltage, can convert the received electrical signal to the motor shaft angular displacement or angular velocity on output, and can be adjusted real time feedback signal to the servo drive, realize high precision control.

2.2.2 Main features

- 1. High-energy magnetic.
- 2. 300% overload capacity for short periods of time.

- 3. Flange dimensions (mm): 40、60、80、110、130
- 4. Power: 0.1-3KW optional
- 5. Low noise, low heat, high precision, high rotation speed, etc.

2.2.3 Servo motor model description and nameplate content

1. Model description:

3000W

30

2 Nameplate content description

2.3 Servo control system and Main power circuit connection

2.3.1 Wiring diagram of servo control system

The servo driver is directly connected to the industrial power supply, without the use of transformers and other power source isolation. In order to prevent cross electric shock accident of servo system, please use fuse or circuit breaker for wiring on input power supply. Because the servo driver has no built-in grounding protection circuit, in order to form a more secure system, please use a leakage circuit breaker with overload and short circuit protection or a dedicated leakage circuit breaker with supporting ground wire protection.

2.3.2 loop-connectivity main power

1、 single-phase power supply

2、Three-phase power supply

Chapter 3 Port usage and cabling

3.1 Distribution of ports in Servo-drive

3.2 Description of servo driver CN1 control port

3.2.1 Definition of CN1 control port

The upper control and interface of drive, It has the function of the upper computer to control the driver and the feedback output of the drive.

Definition of pins in CN1 terminal:

Pin number	Label	Definition	Declaration
1	DO4+	Digital output +	Customize output port
2	DO3-	Digital output -	Customize output port
3	DO3+	Digital output +	Customize output port \square
4	DO2-	Digital output -	Customize output port
5	DO2+	Digital output +	Customize output port
6	D01-	Digital output -	Customize output port
7	D01+	Digital output +	Customize output port
8	DI4-	Digital input -	Customize input port
9	DI1-	Digital input -	Customize input port
10	DI2-	Digital input -	Customize input port
11	COM+	Common input	Active High 24V

12	GNDA	Emulation GND	
13	GNDA	Emulation GND	
14	NC	nop	
15	MON2	Analog data monitoring	not currently supported
		output 2	
16	MON1	Analog data monitoring	not currently supported
		output 1	
17	+24V	+24V output (outside I/O)	Maximum allowable output current:
			150mA
18	T_REF	Torque analog control +	
19	GNDA	Emulation GND	
20	+12V	+12V output (simulate command)	Maximum allowable output current:
			50 mA
21	OA+	Encoder A positive output	
22	OA-	Encoder A negative output	
23	OB-	Encoder B negative output	
24	OZ-	Encoder Z negative output	
25	OB+	Encoder B positive output	
26	DO4-	Digital output -	Customize output port
27	DO5-	Digital output -	Customize output port
28	DO5+	Digital output +	Customize output port
29	HPUL-	Digital input -	
30	DI8-	Digital input -	Customize input port
31	DI7-	Digital input -	Customize input port
32	DI6-	Digital input -	Customize input port
33	DI5-	Digital input -	Customize input port
34	DI3-	Digital input -	Customize input port
35	24V SIGN+	24V positive direction	Active High 24V
36	SIGN+	positive direction	Active High 5V
37	SIGN-	minus direction	Active low 0V
38	HPUL+	high-speed pulse +	
39	24V PULS+	24V pulse +	Active High 24V
40	HSIGN-	High Speed direction -	
41	PULS-	Pulse -	Active low 0V
42	V_REF	Velocity analog control +	
43	PULS+	Pulse +	Active High 5V

44	GND	Digital GND	
45	СОМ	+24V output GND	
46	HSIGN+	High Speed direction +	
47	СОМ	+24V output GND	
48	OCZ	Encoder Z Phase-open	
		collector output	
49	СОМ	+24V output GND	
50	OZ+	Encoder Z positive output	

Notice:

1、When the CN1 terminals are connected, 24V PULS+ and PULS+ share PULS-, 24V SIGN+ and SIGN+ share SIGN-,

The difference is just a 24V high level input and a 5V high level input.

2、 digital input (DI) port、 digital output (DO) port, Please refer to the parameter description in chapter 8 to set the custom function.

3.2.2 Connection instructions for CN1 control ports

Servo driver

The digital input DI (DI1-DI8) can be connected using the circuit of switches, relays, and open-collector transistors. Power can be supplied from v Servo drivers from an external source. (Please reference of the servo drivers of for p06-xx I/O parameters)

External power input

Internal power input

The digital output DO(DO1-DO5) can be connected with relays, photoelectric couplers, etc. The power supply provided inside the drive can be used or external power supply can be used. When using internal power supply, The 24V power supply inside the driver provides only 150mA.If the load is greater than 150mA, be sure to use an external power supply with a supply voltage range of 5-24v. (Please refer to chapter 8.2.7 for p06-xx I/O parameters)

(Relay) External power supply

(Optocoupler) External power source

(Optocoupler) Internal power supply

Speed and torque control analog control input effective voltage range (-10v ~10V), The command value corresponding to this voltage range can be set by the following parameters, P06-40 Speed analog command input gain, P06-43 Torque analog command input gain. For the specific setting method, please read the detailed description of parameters.

3.3.1 Description of SCSI-20P encoder connector

3.3 Description of the CN2 encoder port of the driver

SCSI-20P Pin distribution of the CN2 port

Pin number	Label	Definition	Declaration
1	NC	nop	
2	EZ-	Encoder Z negative input	
3	NC	nop	
4	T-	Bus encoder T-	Special for bus drive
5	T+	Bus encoder T+	Special for bus drive
6	EW-	Magnet pole W negative input	
7	EB+	Encoder B positive input	
8	EW+	Magnet pole W positive input	
9	EB-	Encoder B negative input	
10	EZ+	Encoder Z positive input	
11	EA+	Encoder A positive input	
12	EA-	Encoder A negative input	
13	GND	Output power supply GND	
14	+5V	Output power supply 5V	
15	GND	Output power supply GND	
16	+5V	Output power supply 5V	
17	EV+	Magnet pole V positive input	
18	EV-	Magnet pole V negative input	
19	EU-	Magnet pole U negative input	
20	EU+	Magnet pole U positive input	

description of SCSI-20P encoder connector

3.3.2 Description of 1394-6P encoder connector

Pin number	Label	Definition	Declaration
1	+5V	Output power supply 5V	
2	GND	Output power supply GND	
3	NC	nop	
4	NC	nop	
5	T+	Bus encoder T+	Special for bus drive
6	T-	Bus encoder T-	Special for bus drive

Notice: The connector of 1394-6p encoder is special for 400W driver and the following models. For wiring, please connect according to the sign of the terminal.

3.4 Description of the driver's CN3/CN4 port

Fin-out number	Label	Defined declaration
PIN1	CANH	CNAH(FSSB)
PIN2	CANL	CNAL(FSSB)
PIN3	CGND	CGND(FSSB)
PIN4	Reservation	Reservation
PIN5	Reservation	Reservation
PIN6	GND	GND
PIN7	485-	485-
PIN8	485+	485+

3.5 Description of the driver's CN5 port

Face CN5 port head-on

Pin-out number	Label	Defined declaration
1	3.3V	RS232 power supply 3.3V
2	TX232	RS232 receive
3	RX232	RS232 send
4	Reservation	No connection
5	GND	RS232 GND

3.6 Port description of power supply and motor power line

Label	Definition	Declaration
R、 S、 T	The power supply input of	For single/three-phase 220V ac, it is recommended
	the main circuit	to use three-phase power supply of 1.5kw and
		aboveConnect R, T with 0.4kw and below
L1、L2	The input end of the	Connect to single - phase 220V AC
	power supply in the	
	control circuit	
U、V、W	The connection end of the	Connect the power line of the motor
	motor power line	
		When using the built-in regenerative resistance,
B1、B2、B3		short-connect B1 and B2 (our 750W and above
	The connection end of the	drives have built-in regenerative resistance)
	regenerative resistor	When using external resistance, disconnect the short
		connection of B1 and B2, and connect both ends of
		the resistance to B1 and B3
Earthing screw	Driver protection GND	Connect the ground wire of power supply and motor
	screw	
Label	Definition	Declaration

Notice:

- Be sure to connect the electromagnetic contactor between the power supply and the main circuit power supply of the servo driver, so that in case of failure of the servo driver, the power can be cut off to prevent fire caused by excessive current.
- 2. There is no built-in regenerative resistance for drivers of 0.4kw and below. When the feedback energy exceeds the capacitive absorption capacity, an overvoltage alarm of AL.402 will appear, and set p00-30, p00-31 and p00-32 to corresponding values, Refer to 8.2 specification of parameter analysis.

Chapter 4 Installation instructions

750W / 1.5KW AC servo driver (unit: mm)

AC servo driver with 2kW power (unit: mm)

AC servo driver with 3KW power (nuit: mm)

Notice:

1. The normal installation direction of the servo driver must be vertical, with the top facing upward to facilitate heat dissipation.

2. The device shall be well ventilated when the driver is installed, and the distance between multiple drivers shall not be less than 5CM when they are used side by side in the cabinet.

3. In order to ensure safe use, please make sure that the earthing protection terminal of the driver is well connected with the protective ground of the device!

4.2 Install the environment used

The installation environment has a direct impact on the normal operation and service life of the product, so the following conditions must be met:

- 1. Working environment temperature: 0 ~ 55℃; Working environment humidity: 10% ~ 90% (no condensation).
- 2. Storage environment: -20°C ~ +85°C;Humidity of storage environment: less than 90% (no condensation).
- 3. Vibration: below 0.5G.
- 4. Prevent dripping rain or damp conditions.
- 5. Avoid exposure to the sun.
- 6. Prevent oil mist, salt erosion.
- 7. Prevent corrosive liquids, gas, etc.
- 8. Prevent dust, cotton wool and metal particles from invading.
- 9. Stay away from radioactive materials and combustible materials.
- 10. Space should be reserved around the location of the drivers in the cabinet for convenient loading, unloading and maintenance.
- 11. Pay attention to the air flow in the cabinet, if necessary, add an external fan to enhance the air flow, reduce the drive environment temperature to facilitate heat dissipation; The long-term operating temperature is below 55°C.
- Try to avoid nearby vibration source, add shock absorption device such as vibration absorber or antivibration rubber gasket.
- 13. If there is an electromagnetic interference source nearby, and the power supply and control line of the driver are interfered, resulting in the wrong operation, noise filter can be added or various effective anti-interference measures can be adopted to ensure the normal operation of the driver. (the noise filter will increase the leakage current, so the isolation transformer should be installed at the input end of the driver power supply.)

Chapter 5 Panel displays instructions and Settings

5.1 The instructions of the panel functions

JASD series ac servo panel with six LED digital display state: 5 - bit key input command, Specific key functions are as follows:

Panel key label	Definition	Explaination
		shift function
	LEFT button	Use to toggle high/low display in parameter
		mode
	UP button	Display changes, value added function
	DOWN button	Display changes, value reduction function
M	M button	Function switch and undo exit
ENT	ENT button	Identify or save functionality

Remarks:

ENT button Hold for 3 seconds to confirm or save the function

Under the monitoring and parameter interface, long press ENT button to flip quickly

5.2 Operation mode switching process

JASD series ac servo has four function modes, namely state display mode, monitoring mode, parameter setting mode and auxiliary mode. The switching process between them is as follows:

Note: after pressing ENT to enter the mode setting, you can exit the mode selection by pressing M
5.3 Status display

The display discrimination is as follows:

Bit data

Abbreviation symbol

Status display bit data meaning:

Display	Meaning	Display	Meaning
8.8.	Control circuit power on display	8.8	Main circuit power supply ready display
	Speed and torque control: consistent display of speed Position control: display after positioning		Rotate the check out display
	Base block display The light is ON at servo OFF state and OFF at ON state		Speed, torque control: speed command input Position control: instruction pulse input display

Status display abbreviation meaning:

Display	Meaning
8.8.8.9.	Servo not ready (power supply not on)
888	Servo ready (servo motor is not energized)
	In servo enable state (servo motor energized state)
8. 8.6.E .	Indicates that the input port of the forward overpass signal is in a valid
	state, and the forward turn instruction of the motor is invalid
8. 6.6.E .	Indicates that the input port of the reverse overpass signal is in a valid
	state, and the motor inversion instruction is invalid
	Servo related operation completed correctly
888888	The servo is in the enabling state and cannot be operated. It must be
	turned off to the enable
8.6.6.6.8.	Invalid value entered, the servo does not perform the current

	operation
	The relevant parameters of the servo are locked, which shall be
	unlocked before operation
RESS.	Servo fault display. Please refer to chapter 9 for fault definition

5.4 Write and save method for parameter setting

Chapter 6 control mode and setting

6.1 Position control

6.1.1 Position control wiring diagram

6.1.2 Position control wiring diagram

Controller end Direction + pulse input mode : the direction + pulse input mode can be divided into 5V and 24V signal input modes. Twisted pair wire connection can improve the anti-interference capability. In general, this position control wiring method is often used in MCU controller system. The maximum input pulse frequency of this control is 500KHz

5V pulse + direction input mode

24V pulse + direction input mode

CONTROLLER

Controller - end collector open input mode description: single - end input mode can use either internal power supply or external power supply. But do not use dual power input to avoid damaging the drive. Generally PLC controller system USES this kind of position control wiring method

Open collector USES external power supply

SERVO DRIVER

Open collector USES internal power supply

Note: high level must be between 3.3-5v when high speed pulse port is input

6.1.3 Description of position control mode parameters

1. Motor and driver control parameters

Para code	Name	Set range	Default	Unit
P01-01	Control Mode Setting	0-6	0	0: position mode 1: speed mode 2: torque mode 3: speed, torque 4: position , speed 5: position, Torque 6: Servo batch function
P03-00	Location command source	0-1	0	0: pulse command 1: Numbers given
P03-01	Command pulse mode	0-3	1	0: Orthogonal impulse command 1: Direction + pulse command 2 or 3:Double pulse instruction
P03-02	Instruction pulse input terminal	0-1	0	0: low speed pulse 1: high-speed pulse
P03-03	Reverse the command pulse	0-1	0	Set the initial direction of motor rotation
P03-09	The number of instruction pulses per revolution	0-65535	10000	Set according to user requirements See the specification of 8.2 parameters for details
P03-10	Molecule of electronic gear 1	1-65535	1	Set according to user requirements
P03-11	Denominator of electronic gear 1	1-65535	1	See the specification of 8.2 parameters for details
P03-15	Position deviation is Set too large	0-65535	30000	Set according to user requirements
P03-25	Output pulse number of one revolution of absolute motor	0-60000	2500	Set according to user requirements

2、gain parameter

Please refer to the parameter adjustment in chapter 7 for adjustment

6.1.4 Example of electronic gear ratio calculation

1、 Ball screw drive

Assumptions:

(1) mechanical parameters: deceleration ratio R is 2/1, lead lead of lead screw is 10mm

(2) resolution of each turn of position ring of absolute value encoder: 17bit=131072

(3) load displacement corresponding to 1 position instruction (instruction unit) : 0.001mm Then:

According to (1) and (3), the position instruction (instruction unit) value required for the screw to rotate 1 turn (table movement 10mm) :

$$\frac{10}{0.001}$$
 =10000

The electronic gear ratio is :(B is the numerator, A is the denominator)

$$\frac{B}{A} = \frac{131072}{10000} \times \frac{2}{1} = \frac{16384}{625}$$

Finally, the parameter p03-10 is set to 16384, and p03-11 is set to 625

Note: P03-09 needs set to 0 ! Then P03-10 & P03-11 is workable ! 1. Belt pulley drive

Assumptions:

(1) mechanical parameters: deceleration ratio R: 5/1, pulley diameter: 0. 2m(pulley circumference: 0.628m)

(2) resolution of each turn of position ring of absolute value encoder: 17bit=131072

(3) load displacement corresponding to 1 position instruction (instruction unit) : 0.000005m Then:

According to (1) and (3), the value of position instruction (instruction unit) required for the pulley (load) to rotate 1 turn can be obtained:

$\frac{0.628}{0.000005} = 125600$

The electronic gear ratio is :(B is the numerator, A is the denominator)

$$\frac{B}{A} = \frac{131072}{125600} \times \frac{5}{1} = \frac{4096}{785}$$

Finally, p03-10 is set to 4096 and p03-11 is set to 785

Note: P03-09 needs set to 0 ! Then P03-10 & P03-11 is workable ! 2. Rotating load

Assumptions:

(1) mechanical parameters: the deceleration ratio R is 10/1, and the rotation Angle of the load axis for one turn is 360°

(2) resolution of each turn of position ring of absolute value encoder: 17bit=131072

Then:

According to (1) and (3), the value of position instruction (instruction unit) required for 1 rotation of the load is:

$$\frac{360}{0.01} = 36000$$

The electronic gear ratio is :(B is the numerator, A is the denominator)

$$\frac{B}{A} = \frac{131072}{36000} \times \frac{10}{1} = \frac{8192}{225}$$

Finally, the parameter $\rm p03{-}10$ is set to 8192 and $\rm p03{-}11$ to 225.

Note: P03-09 needs set to 0 ! Then P03-10 & P03-11 is workable !

6.2 speed control

6.2.1 Speed control wiring diagram

6.2.2 Description of speed control mode parameters

1. Motor and driver control parameters

Just motion control

0755-26509689

Para code	Name	Set range	Default	Unit
P01-01	Control Mode Setting	0-6	1	 position mode speed mode torque mode speed, torque position, speed position, torque Servo batch function
P04-00	Speed instruction source	0–3	0	<pre>0: External analog instruction 1: digital instruction (parameter setting) 2: digital instruction (communication) 3: internal multiple sets of instructions</pre>
P04-01	Speed command analog volume invert	0-1	0	Set the initial direction of motor rotation
P04-02	The numerical velocity is given	-6000-6000	0	Set the speed command value, the speed mode and p04-00 is 1.
P04-06	Forward speed limit	0-6000		Restricted forward speed
P04-07	Reverse speed limit	-6000-0		Restricted reverse speed
P06-40	Speed analog command input gain	10-2000	300	Set according to user requirements See the specification of 8.2 parameters for details

2、 gain parameter

Please refer to the parameter adjustment in chapter 7 for adjustment

6.3 torque control

6.3.1 Torque control wiring diagram

6.3.2 Description of torque control mode parameters

1. Motor and driver control parameters

Para code	Name	Set range	Default	Unit
P01-01	Control Mode Setting	0-6	2	 position mode speed mode torque mode speed, torque position, speed position, torque Servo batch function
P05-00	Torque instruction source	0-3	0	<pre>0: external simulation instruction (speed limiter is set by p05-02) 1: digital instruction (speed limiter is set by p05-02) 2: external simulation instruction (speed limiter is determined by speed simulation instruction) 3: digital instruction (speed limiter is determined by speed analog instruction)</pre>
P05-01	Torque instruction analog quantity is reversed	0-1	0	Set the initial direction of motor rotation
P05-02	Torque mode speed limiter given value	0-6000	1000	Set the maximum speed of the motor in torque mode. P05-00 is 0,1
P05-05	Torque limiter setting source	0-2	0	Used to adjust the source of torque limits
P05-10	Internal forward torque limiter	0-300.0	200.0	Limit forward torque values

Just motion control

0755-26509689

P05-11	Internal reverse torque limiter	-300.0-0	-200. 0	Limit the reverse torque value
P06-43	Torque analog command input gain	0-100	10	Set according to user requirements See the specification of 8.2 parameters for details

 $2\,{\scriptstyle \smallsetminus}\,$ Torque control command related gain parameters

Please refer to the parameter adjustment in chapter 7 for adjustment

Chapter 7 Pre-operation and parameter adjustment

7.1 test run

7.1.1 Pre operation detection

In order to avoid damage to the servo driver or mechanism, please remove all the load of the servo motor before operation, and carefully check whether the following precautions are normal, and then power on for no-load test; After the no-load test is normal, the load of the servo motor can be connected for the next test.

Notes:

Test before power	1. Check whether the servo drive has obvious appearance damage					
on	2. The connecting part of distribution terminal shall be insulated					
	3. Check whether there is any foreign body inside the drive					
	4. Servo drivers, motors and external regenerative resistors shall not be placed on					
	combustible objects					
	5. In order to avoid the failure of the electromagnetic brake, please check whether the					
	circuit can be stopped immediately and cut off					
	6. Confirm whether the external power supply voltage of the servo driver meets the					
	requirements					
	7. Confirm whether the motor U, V and W power lines, encoder lines and signal lines					
	are connected correctly (confirm according to motor labels and instructions)					
Power on detection	1. When the servo driver is powered on, do you hear the sound of relay action					
	2. Whether the servo driver power indicator and LED display are normal					
	3. Confirm whether the parameters are set correctly or not. Unexpected actions may					
	occur depending on the mechanical characteristics, do not make extreme adjustments					
	to the parameters					
	4. Whether the servo motor is self-locking or not Please contact the manufacturer if					
	the servo motor has too much vibration and sound during operation					

7.1.2 No-load test run

1. JoG mode no-load test, the user can not need to connect additional wiring, for the sake of safety, before the JoG no-load speed test, please fix the motor base, in case the motor speed change caused by the reaction force caused by dangerous. The following is a simple wiring diagram in JoG mode:

 $2\,{\scriptstyle \sim}\,$ Select JoG mode for test running according to the following flowchart

Ramarks: Long press ENT in test running mode, enter the speed edit menu, edit speed by UP, Down and Left keyboard combination, afterwards long press ENT, reenter Jog mode, press Up and Down motor will run at new setting speed.

This setting speed will not be saved after exiting Jog mode. Please refer chapter 8.4 the accessory function.

7.2 parameter adjustment

After selecting the appropriate control mode according to the equipment requirements, you need to make reasonable adjustments to the servo gain parameters, to make servo driver can drive the motor quickly and accurately to maximize the mechanical performance.

The servo gain is adjusted by multiple loop parameters (position loop, velocity loop, filter & etc.), and they will affect each other. Therefore, the setting of the gain needs to be balance adjusted according to certain rules.

The process of gain adjustment can be performed according to the following diagram:

Input to P01-04 according to mechanical output inertial ratio or execute load rotor inertial recognition AF_JL.

Set P01-02 to be 1 or 2, gradually increasing P01-03 until noise heard according to request, and return back 2 steps under current rigidity grade.

Set P01-02 to be 0 after saving P01-00, P02-0, P02-10, P02-11, P02-13, P02-14, P08-20 manually, afterwards you can tune manually.

7.3 Gain tuning manually

7.3.1 Basic parameter

When the automatic gain adjustment fails to achieve the desired effect, you can manually fine-tune the gain to optimize the effect.

The servo system consists of three control loops. The basic control block diagram is as follows:

The gain adjustment needs to follow the order of inner loop first and outer loop second. First set the load inertia ratio P01-04, then adjust the velocity loop gain, and finally adjust the position loop gain.

Velocity loop gain: Increase the setting value as much as possible in case of not vibration no noise, which can

improve the speed following performance and speed up the positioning time.

Velocity integral constant: The smaller the set value is, the faster the integral speed is and the stronger the integral effect is. If it is too small, it will cause vibration and noise.

parameter code	designation	setting range	setting	Explain
P01-02	Real-time automatic tuning mode	0-3	1	0: Manually tuning rigidity 1: standard mode automatic tuning rigidity. In this mode, P02-00, P02-01, P02-10, P02-11, P02-13, P02-14, P08-20 will be set automatically according to the rigidity level set in P01-03. Manual tuning does not work. The following parameters are set by the user:

				P02-03(Velocity feed-forward gain), P02-04
				(velocity feed-forward smoothness
				constant)
				2: Position mode automatic tuning rigidity,
				in this mode, P02-00, P02-01, P02-10, P02-11,
				P02-13, P02-14, P08-20 will be set
				automatically according to the rigidity
				level set in PO1-O3. Manual tuning does not
				work. The following parameters will be fixed
				and cannot be changed:
				P02-03 (velocity feed-forward gain): 30.0%
				P02-04 (velocity feed-forward smooth
				constant): 0.50
				3: automatic tuning rigidity 2, in this mode,
				P02-00, P02-01, P02-10, P02-11, P02-13, will
				be set automatically according to the
				rigidity level set in P01-03. Following
				parameter will be setting by user: PO2-O3
				(velocity feed-forward gain) , PO2-14
				(velocity integral constant 2) , PO8-20
				(torque command filter constant 1), PO8-21
				(torque command filter constant2)
	Deel time			Built-in 32 kinds of gain parameters. It
	Real-time			works when PO1-O2 is set to 1, 2, or 3. It
P01-03	automatic	0-31	13	can be used directly according to the actual
	tuning			situation. The larger the set value, the
	rigidity			stronger the rigidity.
				►The larger the setting value, the higher
	Velocity			the gain, the greater the rigidity, and the
P02-00	control	0-3000. 0	80.0	smaller the position lag, but if the value
	gain 1			is too large, the system will shake and
				overshoot.

				▶Increase the value as much as possible
				without shake.
				▶For gain at static.
				►The larger the setting value, the higher
				the gain, the greater the rigidity, and the
				smaller the position lag, but if the value
	Velocity			is too large, the system will shake and
P02-01	control	0-3000.0	80.0	overshoot.
	gain2			▶Increase the value as much as possible
				without shake.
				▶For gain at dynamic.
				The feed-forward gain of the velocity loop.
			30.0	The larger the parameter value, the smaller
	velocity feed-forwar d gain	0-100.0		the system position tracking error and the
P02-03				faster the response. However, if the
				feed-forward gain is too large, the position
				loop of the system will be unstable, and
				it's easy to cause overshoot and shake.
				This parameter is used to set the velocity
	velocity		0	loop feed-forward filtering time constant.
P02-04	feed-forwar	0-64.00		The larger the value, the larger the
	d smooth constant			filtering effect, but at the same time the
				phase lag increases.
				▶ The larger the setting value, the greater
				the gain and rigidity. The parameter value
	Velocity			is set according to the motor and load.
P02-10	ratio gain 1	1-2000.0	40.0	▶Increase the value as much as possible
	_			without shock.
				▶For gain at static.
	velocity			▶ Speed regulator integration time constant.
P02-11	integral	0.1-1000.0	10.0	The smaller the setting value is, the faster

	constant 1			the integration speed is, the greater the rigidity is. If it is too small, it will cause vibration and noise >reduce this parameter as much as possible in case of no vibration. >This parameter is for steady state
				response.
P02-12	Fake differentia 1 feed-forwar d control value 1	0-100. 0	100. 0	 When set to 100.0%, the velocity loop adopts PI control, and the dynamic response is fast; when set to 0, the velocity loop integral effect is obvious, and filter the low frequency interference, but the dynamic response is slow. By tuning this value, the speed loop have better dynamic response, and at the same time, it can increase the resistance to low-frequency interference.
P02-13	Speed proportiona l gain 2	1-2000. 0	45.0	 The larger the setting value, the greater the gain and rigidity. The parameter value is set according to the motor and load. Increase the value as much as possible without shake. For gain during dynamic.
P02-14	Velocity integral constant 2	0. 1-1000. 0	1000. 0	 Speed regulator integration time constant. The smaller the setting value is, the faster the integration speed is, the greater the rigidity is. If it is too small, it will cause vibration and noise. Decrease the value as much as possible without shake. This parameter is for steady state response.

7.3.2 Gain switching

The gain switching function can be triggered by the internal state of the servo or the external DI port. It is only effective in the position control and speed control modes. With gain switching, the following effects can be achieved

Switch to lower gain when the motor is static (servo enabled) to hold vibration

Switch to higher gain when the motor is static (servo enabled) to short positioning time;

Switch to higher gain in the running state of the motor to obtain better command following performance;

Switch to different gain settings by external signals according to the use situation.

relative parameter

Para code	Name	Set range	Default	Unit	Effective time
P02-30	Gain switching mode	0-10	7		Real time
P02-31	Gain switching grade	0-20000	800	-	Real time
P02-32	Gain switching lag	0-20000	100	-	Real time
P02-33	gain switching delay	0-1000.0	10.0	1ms	Real time
P02-34	Position gain switching time	0-1000.0	10.0	1ms	Real time

7.3.3 Feed-forward function

Speed feed-forward: During position control, the speed control command required from the position command calculation is added to the output of the position regulator, which can reduce the position deviation to improve the response of the position control.

Torque feed-forward: Calculate the required torque command from the speed control command and add it to the speed regulator output to improve the response of the speed control

A. Speed feed forward operation

With the speed feed-forward smoothing constant set to be 50 (0.5ms), the speed feed-forward gain is gradually increased to meet the system requirements. However, too large speed feed-forward gain will cause position overshoot, this will make the setting time longer.

B. Torque feed-forward operation

With the torque feed-forward smoothing constant set to be 50 (0.5ms), the torque feed-forward gain is gradually increased to meet the system requirements.

relative parameter

Para	Namo	Pango	Dofault	Unit	Effective
code	ivalle	Kange	Derault	UIIIt	time
P02-03	velocity feed-forward gain	0-100.0	30.0	1.0%	Real time
P02-04	velocity feed-forward smooth constant	0-64.00	0.5	1ms	Real time
P02-19	torque feed-forward gain	0-30000	0	1.0%	Real time
P02-20	torque feed-forward smooth constant	0-64.00	0.8	1ms	Real time

7.3.4 Disturbance observer

The disturbance torque value can be inferred by using the disturbance observer and compensated on the torque command to reduce the influence of disturbance torque and vibration. This observation function is valid in position mode and velocity mode.

Using instruction:

a) Set P08-26 (filter constant) to a larger value, and then gradually increase P08-25 (compensation gain). At this time, the action sound may become louder; after confirming that the current compensation gain is effective, gradually decrease P08-26.

b) Increasing the gain can improve the effect of disturbance torque suppression, but the noise becomes louder

c) After shortening the filter time constant, the disturbance torque with less delay can be estimated, and the effect of suppressing the influence of disturbance can be improved, but the noise will become louder.

d) Please look for settings with better balance.

Relative	parameter
----------	-----------

Para code	Name	Range	defaul t	Unit	Effectiv e time
P08-25	Disturbance torque compensation gain	0-100.0	0	%	Real time
P08-26	disturbance torque filter time constant	0-25.00	0.8	1ms	Real time

7.3.5 Resonance suppression

If the rigidity of the servo system is too large and the response is too fast, it may cause resonance in the mechanical system. This situation can be improved by reducing the gain of the control loop. Resonance suppression can also be achieved by using a low-pass filter and notch without reducing the gain

1. Resonance frequency detection

The resonance frequency of the mechanical system can be observed through monitoring items d26.1.Fr, d28.2.Fr

2、Torque command low-pass filter (P08-20)

The low-pass filter is used in the case when the vibration frequency is deviated, and it can have a good performance when used at high frequencies. By setting the filter time constant, it will attenuate resonance near the resonance frequency. However, the low-pass filter will make the system phase lag, reduce the bandwidth, and reduce the phase margin easily cause loop oscillation. Therefore, it can only be applied to high frequency vibration applications.

Filter deadline frequency (Hz) = 1/(2*pi*p08-20(ms)*0.001)

para code	Name	Range	Defaul t	Unit	Effective time
P08-20	Torque command filter constant	0-25.00	0.8	1ms	Real time

3、Notch filter

The notch filter is used when the system resonance frequency is fixed. The trap can reduce the mechanical resonance by reducing the gain at a specific frequency. After the trap is set correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The servo has 4 built-in traps. When P08-11 is set to 0, 4 sets of traps can be started at the same time, and parameters can be entered manually.

A. Self-adaptive notch mode

Through the self-adaptive notch filter function module, the servo system will automatically identify the current resonance frequency and automatically configure the notch parameters. Using instruction as following:

a) Set P08-11 to 1 or 2 according to the number of resonance points. When resonance occurs, you can set
 P08-11 to 1 and turn on an self-adaptive notch. After gain tuning, set P08-11 to 2 to turn on 2 adaptive notches if new resonance appears.

b) When the servo is running, the parameters of the third and fourth sets of notch filters will be automatically updated, and the corresponding function code will be automatically stored every 30 minutes. After being stored, the notch parameters will also be saved after power off.

c) If the resonance is suppressed, it shows that the self-adaptive trap is effective. After the servo system have run stably for a period of time, set P08-11 to 0, and the notch parameters will be fixed to the last updated

value. This operation can prevent the trap parameters from being updated to wrong values due to wrong operations during servo running, which will intensify the vibration.

d) If the vibration cannot be eliminated for a long time, please turn off the servo enable in time.If there are more than two resonance frequency points, the self-adaptive notch cannot meet the requirements, in this case the manual notch can be used.

Relative parameter

para code	name	Description
P08-11	self-adaptive notch filter Mode selection	 range: 0-4 0: The 3rd and 4th notch filter parameters will not be updated automatically, it's saved as the current values. But manual input is allowed. 1: One of the self-adaptive notch filter is effective, the 3rd notch parameter will be updated automatically, manual input is not allowed. 2: Two of the self-adaptive notch filter is effective, the 3rd and 4th notch parameter will be updated automatically, manual input is not allowed. 3: Detect resonance frequency only 4: Clear the 3rd and 4th notch parameters and restore to default value.
P08-13	Self-adaptive notch filter vibration detect door limit	Setting range: 0-7 This parameter sets the sensitivity of the self-adaptive notch vibration detection. The smaller the parameter value, the more sensitive the detection sensitivity is.

B. Setting the notch parameters manually

a) The resonance frequency of the mechanical system can be observed through monitoring items d26.1.Fr, d28.2.Fr

b) Enter the resonance frequency from the previous step into the notch parameters, simultaneously input the width level and depth level of the same notch teams.

c) If the vibration is suppressed, it means the notch is functioning. You can continue to increase the gain and repeat the previous two steps after new vibrations appear.

d) If the vibration cannot be removed for a long time, turn off the servo ENA in time.

C. Notch Width Grade

Notch Width Grade = $\frac{\text{Notch width}}{\text{Notch central frequency}}$

The notch width represents the frequency bandwidth with a magnitude of -3dB relative to the center frequency of the notch

D. Notch Depth Grade

Notch Depth Grade =
$$\frac{\text{Output}}{\text{Input}}$$

When the notch depth level is 0, the input is completely suppressed at the center frequency; when the notch level is 100, the input can be completely passed at the center frequency.

relative parameter

Para code	Name	Description		
P08-30	Notch filter 1	Setting range: 300-5000, Unit: Hz		

	frequency	Notch is non-effective when the Notch filter 1 central frequency set
		to be 5000
		Setting range: 0-20
P08-31	notch filter l	notch 1's notch width grade is the ratio between width and central
	width	frequency
		Setting range: 0-99
		Setting range: 0-99 notch 1's notch depth grade is the ratio between the input and output
P08-32	notch filter 1	Setting range: 0-99 notch 1' s notch depth grade is the ratio between the input and output of the center frequency of the notch
P08-32	notch filter 1 depth	Setting range: 0-99 notch 1's notch depth grade is the ratio between the input and output of the center frequency of the notch The larger this parameter, the smaller the notch depth and the weaker

Notch relative parameter

Para code	name	Range	default	unit	Effective time
P08-11	Self-adaptive notch mode selection	0-4	0		Real time
P08-13	Self-adaptive notch filter vibration detect door limit	1-7	4		Real time
P08-31	Notch filter 1 width	0-20	2		Real time
P08-32	Notch filter 1 depth	0-99	0		Real time
P08-33	Notch filter 2 frequency	300-5000	5000	HZ	Real time
P08-34	Notch filter 2 width	0-20	2		Real time
P08-35	Notch filter 2 depth	0-99	0		Real time
P08-36	Notch filter 3 frequency	300-5000	5000	HZ	Real time
P08-37	Notch filter 3 width	0-20	2	-	Real time
P08-38	Notch filter 3 depth	0-99	0		Real time
P08-39	Notch filter 4 frequency	300-5000	5000	HZ	Real time
P08-40	Notch filter 4 width	0-20	2		Real time
P08-41	Notch filter 4 depth	0-99	0		Real time

Chapter 8 Parameter and Function

8.1 Parameter list

P00-xx Motor and drive parameters

P01-xx Main control parameter

P02-xx Gain parameters

P03-xx Position parameters

P04-xx Velocity parameters

P05-xx Torque parameters

P06-xx I/O parameters

P08-xx Super function parameters

Туре	Para	Name	Setting	Default	unit	Setting	Effectiv
	code		Kange	setting		way	e time
	P00-00	Motor number	0-65535	2000		Stop & reset	Re-power on
	P00-01	Motor rated speed	1-6000		rpm	Stop & reset	Re-power on
	P00-02	Motor rated torque	0.01-655.35		N. M	Stop & reset	Re-power on
motor and driver	P00-03	Motor rated current	0.01-655.35		А	Stop & reset	Re-power on
parameter	P00-04	Motor rotor inertia	0.01–655.35		kg. cm²	Stop & reset	Re-power on
	P00-05	motor pole pairs	1-31		Polar logari thm	Stop & reset	Re-power on
	P00-07	encoder selection	0-3			Stop &	Re-power

						reset	on
	D00 00	Line-saving	0.1			Stop &	Re-power
	P00-08	incremental encoder	0-1			reset	on
	D00_00	Alexalete energiese terms	0.1			Stop &	Re-power
	P00-09	Absolute encoder type	0 1			reset	on
	D00 10	Incremental encoder	0 65525			Stop &	Re-power
	P00-10	lines	0-00030			reset	on
	D00 11	Incremental encoder Z	0 65525			Stop &	Re-power
	P00-11	pulse electrical angle	0-65535			reset	on
	D00 19	Doton initial angle 1	0.260		10	Stop &	Re-power
Motor and	P00-12	Rotor initial angle I	0-360		1	reset	on
driver	D00 12	Doton initial angle 9	2 0-360		10	Stop &	Re-power
parameter	P00-13	Kotor mittai angle 2			1	reset	on
	P00-14	Doton initial angle 2	0.260		10	Stop &	Re-power
		Kotor Initial angle 5	0-200		1	reset	on
	P00-15	Rotor initial angle 4	0-360		1°	Stop &	Re-power
						reset	on
	P00-16	Rotor initial angle 5	0-360		1°	Stop &	Re-power
					1	reset	on
	P00-17	Rotor initial angle 6	0-360		1°	Stop &	Re-power
	100 17	Kotor Initial angle o	0 300		1	reset	on
	P00-20	Display settings on	0-100	100		Running &	Re-power
	100 20	power-on interface	0 100	100		setting	on
	P00-21	RS232 Communication	0-3	2		Running &	Re-power
	100 21	baud rate	0.5	2		setting	on
	P00-23	Slave address	0-255	1		Running &	Re-power
	100 23	Stave address	0 200	1		setting	on
	P00-24	Modbus communication	0-7	2		Running &	Re-power
	r 00-24	baud rate	0-7	2		setting	on
	P00-25	abook way	0-2	0		Running &	Re-power
	r00-29	cneck way	0-3	U		setting	on

Motor and driver parameter	P00-26	Modbus communication response delay	0-100	0	1ms	Running & setting	Re-power on
	P00-28	Torque control Modbus communication compatible setting	0-2	1		Running & setting	Re-power on
	P00-29	Modbus absolute encoder feedback format	0-1	0		Running & setting	Re-power on
	P00-30	brake resistor setting	0-2			Running & setting	Re-power on
	P00-31	extra brake resistor power	0-65535		10W	Running & setting	Re-power on
	P00-32	Extra brake resistor value	0-1000		1 Ω	Running & setting	Re-power on
	P00-33	check ENA for re-open circuit and re-short circuit	0-1	0		Running & setting	Re-power on
	P00-40	Over-heating protection	0-1	1		Stop & resetting	Re-power on
	P00-41	power off protection	0-1	1		Running &setting	Re-power on
	P00-46	Speed inconsistency alarm detection time setting	0-65535	0	1ms	Running & setting	Real time
	P01-01	control mode setting	0-6	0		Stop & resetting	Real time
Main control parameter	P01-02	Automatically tuning mode in real time	0-3	1		Running & setting	Real time
	P01-03	automatically tuning rigidity in real time	0-31	13		Running & setting	Real time

Main	P01-04	rotor inertial ratio	0-100.00	3	ltimes	Running &	Real
						setting	time
	P01-10	control mode after over	0-1	1		Running &	Real
		travel				setting	time
	P01-20	Dunamia braka dalay	0-250	50	1ms	Running &	Real
		Dynamic blake delay				setting	time
	P01-21	disable dynamic brake	0-1	1		Running &	Real
		when power off				setting	time
control	P01-22	disable dynamic brake	0-1	1		Running &	Real
parameter		when servo OFF				setting	time
	P01-23	disable dynamic brake	0-1	1		Running &	Real
		when alarming				setting	time
	P01-24	Disable dynamic brake	0-1	1		Running &	Real
		when over travel				setting	time
	P01-30	brake command - servo	0-255	50	1ms		
		OFF delay (brake ON				Running &	Real
		delay)				setting	time
	P01-31	brake output speed	0-3000	100	1rpm	Running &	Real
		limitation				setting	time
	P01-32	servo OFF brake command	0-255	50	1ms	Running &	Real
		waiting time				setting	time
	DO1 40	out of control check	0.1	1		Running &	Real
	P01-40	ENA	0-1	1		setting	time
Gain parameter	P02-00	nonition control noin 1	n 1 0–3000. 0	48.0	1/S	Running &	Real
		position control gain i				setting	time
	P02-01	Desition control asia 9	0 2000 0	57.0	1/S	Running &	Real
		FOSITION CONTROL gain 2	0-3000.0			setting	time
	P02-03	speed feed-forward	0-100.0	30.0	1.0%	Running &	Real
		gain				setting	time
	P02-04	Speed feed-forward	0-64.00	0.5	1ms	Running &	Real
		smooth constant				setting	time

	P02-10	speed ratio gain 1	1.0-2000.0	27.0	1Hz	Running &	Real
	P02-11	Speed integral	0. 1–1000. 0	10.0	1ms	Running &	Real
		constant 1				setting	time
	P02-12	Fake differential	0-100. 0	100.0	1.0%	D	D 1
		feed-forward control				Running &	Real
Gain parameter		ratio 1				setting	time
	P02-13	anand matic pain 9	1.0-2000.0	27.0	1Hz	Running &	Real
		speed ratio gain 2				setting	time
	P02-14	Speed integral	0. 1–1000. 0	1000. 0	1ms	Running &	Real
		constant 2				setting	time
	P02-15	Fake differential	0-100. 0	100. 0	1.0%	Pupping 6	Pool
		feed-forward control				cotting	timo
		ratio 2				Setting	time
	P02-16	Speed integral error	0-32767	25000		Stop &	Real
		limit value				resetting	time
	P02-19	Torque feed-forward	0-30000	0	1.0%	Running &	Real
		gain				setting	time
	P02-20	Torque feed-forward	0-64.00	0.8	1ms	Running &	Real
		smooth constant				setting	time
	P02-30	Gain switching mode	0-10	7		Running &	Real
						setting	time
	P02-31	Gain switching grade	0-20000	800		Running &	Real
						setting	time
	P02-32	Gain switching lag	0-20000	100		Running &	Real
						setting	time
	P02-33	Gain switching delay	0-1000.0	10.0	1ms	Running &	Real
						setting	time
	P02-34	Position gain	0-1000.0	10.0	1ms	Running &	Real
		switching time				setting	time
	P02-40	Mode switch selection	0-4	0		Running &	Real
						setting	time
-----------	--------	---------------------------------------	--------------	-------	--------	-----------	----------
	P02-41	Mode switch coloction	0-20000	10000		Running &	Real
Gain	102 41	Mode Switch Selection	0 20000	10000		setting	time
parameter	D00 50	Torque command added	-100. 0-100.	0	1 00/	Running &	Real
	P02-50	value	0	0	1.0%	setting	time
				-		Running &	Real
	P02-51	CW torque compensation	0-100.0	0	1.0%	setting	time
		Reverse torque				Running &	Real
	P02-52	compensation	-100. 0-0	0	1.0%	setting	time
		Source of location				Running &	Real
	P03-00	command	0-1	0		setting	time
						Running &	Real
	P03-01	Instruction pulse mode	0-3	1		setting	time
		Instruction Pulse				Running &	Real
	P03-02	Input Terminal	0-1	0		setting	time
		*					
Position		P03-03 Instruction Pulse Inversion				Running &	Real
parameter	P03-03		0-1 0	0		setting	time
*					-		
		Position Pulse				Running &	Real
	P03-04	filtering	0-1	0		setting	time
		Positioning completion				Running &	Real
	P03-05	criteria	0-2	1		setting	time
		Location complete			Encode	Running &	Real
Р	P03-06	range	0-65535	100	r unit	setting	time
		0-					
		Position Feedback				Stop &	Real
	P03-07	format	0-1	0		reset	time
		Number of instruction	0-65535			Running &	Re-power
	P03-09	pulses per turn of		10000	Pulse	setting	on
	1		1		1	0	

		motor					
	D00 10	Electron Gear 1	1 65595	1		Running &	Re-power
	P03-10	molecule	1-65535	1		setting	on
	D00 11	Electronic gear 1	1 65595	1		Running &	Re-power
	P03-11	Denominator	1-65535	1		setting	on
	D02 19	Electron Gear 1 is	0.00767	0		Running &	Re-power
	P03-12	16-bit higher	0-32707	0		setting	on
	D02_12	Electron Gear 2	1_65525	1		Running &	Re-power
	105 15	molecule	1-00000	1		setting	on
Position	P03-14	Electronic gear 1	1-65535	1		Running &	Re-power
parameter	105 14	Denominator	1 00000	1		setting	on
	P03-15	Excessive position	0-65535	30000	指令单	Running &	Real
	105 15	deviation setting	0.0000		位*10	setting	time
	P03-16	Position Instruction				Running &	Real
		smoothing filter time	0-1000.0	0	1ms	setting	time
		constant				betting	01mc
	P03-20	Position loop feedback	0-1	0		Running &	Real
				Ŭ		setting	time
		Increment encoder					
Desition	P03-22	output pulse frequency	1-65535	1		Running &	Real
POSILION	100 88	division ratio	1 00000	-		setting	time
parameter		molecule					
		Increment encoder					
	P03-23	output pulse frequency	1-65535	1		Running &	Real
		division ratio				setting	time
		denominator					
		Absolute number of				Running &	Real
	P03-25	output pulses per	0-60000	2500		setting	time
		revolution of the motor				-	
	P03-30	Linear encoder	0-1	0		Stop &	Real
	100 00	inversion		0		reset	time

	P03-31	The polarity of the LINEAR ENCODER Z pulse	0-1	1	 Stop & reset	Real time
	P03-40	Source of output pulse	0-3	1	 Stop & reset	Real time
	P03-42	Output Z pulse polarity	0-1	1	 Stop & reset	Real time
Position parameter	P03-45	Digital Position Instruction caching mode	0-1	0	 Stop & reset	Real time
	P03-46	Maximum speed of motor at digital position command run time	0-6000	1000	 Running & setting	Real time
	P03-50	The Gantry function enables	0-1	0	 Stop & setting	Real time
	P03-51 The input signal of Gantry function is reversed		0-1	0	 Stop & setting	Real time
	P03-52 Number of feedback pulses per turn of 0-63 Gantry Motor		0-65535	10000	 Running & setting	Re-power on
	P03-53	Gantry function position deviation too large settings	ntry function ion deviation too 0-65535 100 arge settings		 Running & setting	Real time
	P03-55	Gantry proportional gain	0-200	10	 Running & setting	Real time
	P03-60	Origin regression enable control	0-6	0	 Running & setting	Real time
	P03-61 Origin regression		0-9	0	 Running & setting	Real time
	P03-65	High speed searching	0-1000	100	 Running &	Real

	for origin switch					setting	time
	P03-66	Low speed searching for	0.000	10		Running &	Real
		origin switch	0-200	10		setting	time
	P03-67	Search origin switch					5 1
		acceleration and	0-5000	0		Running &	Real
		deceleration time				setting	time
Position	P03-68	Maximum time limit for	0.05550			Running &	Real
parameter		searching origin	0-65550	0		setting	time
	P03-69	HMechanical Origin	0.05505			Running &	Real
		Offset H	0-65535	0		setting	time
	P03-70	Mechanical Origin				Running &	Real
		Offset L	0-65535	0		setting	time
		Speed instruction		_		Stop &	Real
	P04-00	source	0-3	0		setting	time
	P04-01	Speed instruction				Stop &	Real
		analog counter	0-1	0		setting	time
	P04-02	Digital speed given	-6000-6000	0		Running &	Real
Speed		value		0	lrpm	setting	time
parameter	D 04 00	Zero speed position		0		Running &	Real
	P04-03	clamp function	0-1	0		setting	time
	D04_04	Zero speed position	0.0000	20	1	Running &	Real
	P04-04	clamp speed threshold	0-6000	30	Irpm	setting	time
	DO4_05	0	0.6500	6400	1	Running &	Real
	P04-05	Overspeed alarm value	0-0500	6400	Irpm	setting	time
	D04_0C	Remark and limit	0.000	5000	1	Running &	Real
	P04-06	Forward speed limit	0-6000	5000	Irpm	setting	time
	D04_07	Devenues around limit	6000 0	5000	1.000	Running &	Real
	P04-07	Reverse speed limit	-0000-0	-5000	1rpm	setting	time
	P04-10	Zero velocity	0-200 0	2	1rpm	Running &	Real
		detection value	0-200.0	2		setting	time
	P04-11		0-200.0	30	1rpm	Running &	Real

		Rotation detection value				setting	time
	P04-12	Consistent range of velocity	0-200. 0	30	1rpm	Running & setting	Real time
Speed	P04-14	Acceleration time	0-10000	0	1ms/10	Running & setting	Real time
parameter	P04-15	Deceleration time	0-10000	0	00rpm	Running & setting	Real time
	P04-30	Internal setting speed 1	-6000-6000	0	1rpm	Running & setting	Real time
	P04-31	Internal set speed 2	-6000-6000	0	1rpm	Running & setting	Real time
	P04-32 Internal speed		-6000-6000	0	1rpm	Running & setting	Real time
	P04-33	Internal set speed 4	-6000-6000	0	1rpm	Running & setting	Real time
	P04-34	Internal set speed 5	-6000-6000	0	1rpm	Running & setting	Real time
	P04-35	Internal set speed 6	-6000-6000	0	1rpm	Running & setting	Real time
	P04-36	Internal set speed 7	-6000-6000	0	1rpm	Running & setting	Real time
	P04-37	Internal set speed 8	-6000-6000	0	1rpm	Running & setting	Real time
	P05-00	Torque instruction source	0-3	0		Stop & setting	Real time
Torque parameter	P05-01	Inverse Torque instruction analog	0-1	0		Stop & setting	Real time
F or one out	P05-02	Torque mode speed limit given value	0-5000	1500	1rpm	Running & setting	Real time

	1						
	P05-03	Digital torque given	0-300.0	0	1.0%	Running &	Real
		value				setting	tıme
	P05-05	Torque limiter source	0-2	0		Stop &	Real
Torque				_		setting	time
parameter	P05-06	Torque limit check	0-10000	0	mc	Running &	Real
	105 00	out delay	0 10000	0	шъ	setting	time
	D05 10	Internal Forward	0 000 0	000 0	1.00/	Running &	Real
	P05-10	Torque limit	0-300.0	200.0	1.0%	setting	time
		Internal reverse				Running &	Real
	P05-11	torque limit	-300-0	-200. 0	1.0%	setting	time
		External Positive				Running &	Real
	P05-12	Torque limit	0-300.0	100.0	1.0%	setting	time
		External Reverse				Running &	Real
	P05-13	torque limit	-300-0	-100.0	1.0%	setting	time
		DI1 Effective level of				Dunning h	Do-powor
	P06-00	JII Effective level of	0-4	0		Rumming a	Ke-power
		Input port				setting	D
	P06-01	DII input port function	0-24	1		Kunning &	Ke-power
		selection (Servo ON)				setting	on
	P06-02	DI2 Effective level of	0-4	0		Running &	Re-power
		input port				setting	on
I/0		DI2 input port function				Running &	Re-nower
parameter	P06-03	selection (alarm	0-24	2		satting	on
		clear)				Setting	OII
	D00 04	DI3 Effective level of	0.4	0		Running &	Re-power
	P06-04	input port	0-4	0		setting	on
		DI3 input port function					
	P06-05	selection (forward	0-24	3		Running &	Re-power
		overtrip)				setting	on
		DI4 Effective level				Running &	Re-power
	P06-06	of input port	0-4	0		setting	on
	P06-07	DI4 input port function	0-24	4		Running &	Re-power

		selection (reverse				setting	on
		overtrip)					
	P06-08	DI5 Effective level	0-4	0		Running &	Re-power
	100 08	of input port	04	0		setting	on
		DI5 input port function					
		selection(Default:					_
	P06-09	Forward torque	0-24	7		Running &	Re-power
		external torque				setting	on
		limit)					
		DI6 Effective level of				Running &	Re-power
I/0	P06-10	input port	0-4	0		setting	on
parameter		DI6 input port function					
		selection (Default:				Running &	Re-power
	P06-11	External torque limit	0-24	8		setting	on
		on reverse side)					
	P06-12	DI7 Effective level of	0.4	0		Running &	Re-power
		input port	0-4	0		setting	on
		D17 input port function	0-24	5		D	D
	P06-13	selection (Default:				Kunning &	Re-power
		function model change)				setting	on
	500.40	DI8 Effective level of		0		Running &	Re-power
	P06-16	input port	0-4	0		setting	on
		D17 input port function					
	D00 45	selection		10		Running &	Re-power
	P06-17	(Default:position	0-24	16		setting	on
		instruction clear)					
	DOC 00	DO1 Valid level of	0.1	1		Running &	Re-power
	P06-20	output port	0-1	1		setting	on
		D01 Function change of				Dunning 0	Do nomo
	P06-21	output port	0-13	3		Kunning &	re-power
		(fault:serve ready)				setting	on

	P06-22	DO2 Valid level of	0-1	1		Running &	Re-power
		output port				setting	on
		DO2 Function change of				Running &	Re-power
	P06-23	output port (fault:	0-13	2		setting	on
		brake open)				0	
	P06-24	DO3 Valid level of	0-1	1		Running &	Re-power
	100 24	output port	0 1	1		setting	on
		DO3 Function change of				Duran in an O	Demonstra
	P06-25	output port	0-13	1		Kunning &	ke-power
I/0		(fault:Alarm output)				setting	on
parameter		DO4 Valid level of				Running &	Re-power
	P06-26	output port	0-1	1		setting	on
		DO4 Function change of					
	P06-27	output port				Running &	Re-power
		(fault:position	0-13	4		setting	on
		completed)					
		DO5 Valid level of	0-1			Running &	Re-power
	P06-28	output port		1		setting	on
		D05 Function change of					
		output port				Running &	Re-nower
	P06-29	(fault:check out	0-13	8		cotting	on
		(radit.check out				Setting	OII
		Speed analog command				Dunning (Dee 1
	P06-40	ipput aning command	10-2000	300	1rpm/V	Kullillig &	time
						D	D 1
	P06-41	Speed analog command	0-64.00	0.8	1ms	Kunning &	Keal
		filter constant				setting	time
	P06-42	Speed analog command	-10.000	0	1V	Running &	Real
		offset	-10.000			setting	time
	P06-43	Torque analog command	0.0-100.0	10	10 %	Running &	Real
		gain	0.0 100.0 10			setting	time
	P06-44	Torque analog command	0-64.00	0.8	1ms	Running &	Real

		filter constant				setting	time
	DOC 15	Torque analog command	-10.000	0	137	Running &	Real
I/0	P06-45	offset	-10.000	0	1V	setting	time
parameter	D02 42	Speed analog	0 10 000	0	417	Running &	Real
	P06-46	instruction dead zone	0-10.000	0	1V	setting	time
	DOC 17	Torque analog	0 10 000	0	137	Running &	Real
	P06-47	instruction dead zone	0-10.000	0	1V	setting	time
	D00_01	Load rotation routine	0.1	0		Running &	Real
	P08-01	identification mode	0-1	0		setting	time
	D00 00	Maximum speed of	100,0000	000	1	Running &	Real
	P08-02	inertia identification	100-2000	800	Irpm	setting	time
		Inertia identification				D	D 1
	P08-03	acceleration and	20-800	100	1ms	Kunning &	Keal
		deceleration time				setting	time
Advanced		Wait time after single				Dunning (Dec 1
function	P08-04	inertia identification	50-10000	1000	1ms	Kunning «	Keal
parameter		is completed				setting	time
		The number of motor					
	D00 05	rotations required to		1 00	卷	Running &	Read
	P08-05	complete a single		1.33		setting	only
		inertia					
	D09 11	Adaptive notch mode	0.4	0		Running &	Real
	P08-11	selection	0-4	0		setting	time
		Vibration detection	1 7			Duran in a f	D 1
	P08-13	threshold of adaptive	1-7	3		Kunning &	Keal
		notch filter				setting	time
	D00 17		0.0	0		Running &	Real
	P08-17	Speed monitor	0-2	0		setting	time
		Feedback speed		0.8	1ms	D	D 1
	P08-19	low-pass filter	0-25.00			Kunning &	rea1
		constant				setting	time

	P08-20	Torque command filter constant1	0-25.00	0.8	1ms	Running & setting	Real time
	P08-21	Torque command filter constant2	0-25.00	0.8	1ms	Running & setting	Real time
	P08-25	Disturbance torque compensation gain	0-100.0	0	%	Running & setting	Real time
	P08-26	Disturbance torque filtering time constant	0-25.00	0.8	1ms	Running & setting	Real time
	P08-30	Notch Filter 1 frequency	300-5000	5000	HZ	Running & setting	Real time
P08-31 Advanced function	P08-31	Notch Filter 1 width	0-20	2		Running & setting	Real time
	P08-32	Notch Filter 1 depth	0-99	0		Running & setting	Real time
parameter	P08-33	Notch Filter 2 frequency	300-5000	5000	HZ	Running & setting	Real time
	P08-34	Notch Filter 2 width	0-20	2		Running & setting	Real time
	P08-35	Notch Filter 2 depth	0-99	0		Running & setting	Real time
	P08-36	Notch Filter 3 frequency	300-5000	5000	HZ	Running & setting	Real time
	P08-37	Notch Filter 3 width	0-20	2		Running & setting	Real time
	P08-38	Notch Filter 3 depth	0-99	0		Running & setting	Real time
	P08-39	Notch Filter 4 frequency	300-5000	5000	HZ	Running & setting	Real time
	P08-40	Notch Filter 4 width	0-20	2		Running & setting	Real time

0755-26509689

Advanced function	P08-41	Notch Filter 4 depth	0-99	0	 Running &	Real
parameter					Setting	CINC.

8.2 Parameter Description

8.2.1 P00-XX motor and driver parameter

Para	Name	Description
code		Default sot
P00-00	motor number	0: P0-01 to P0-17 is available
100 00		2000: Absolute encoder, P0-01 to P0-05 identified by driver
		Set range: 1~6000 rpm; unit: rpm;
P00-01	rated speed	default value.
D00.02	voted to you o	Set range 0.01-655.35 N.m;unit: N.M
P00-02	rated torque	default value.
DOD 02	Pated surrent	Set range: 0.01-655.35A, unit: A
P00-03	Rated current	Default value
DO0 04	Deterrinentie	Set range: 0.01-655.35kg.cm ² ; unit: kg.cm ²
P00-04		Default value
P00.05	Polo pairs	Set range:1-31 pairs; unit: 对极
F00-03		Default value
		Range: 0-3
DO0 07	Encodor ontion	0&1: incremental encoder
P00-07	Encoder option	2: Single-turn absolute encoder
		3: Multi-turn absolute encoder
	Line saving	Range: 0-1
P00-08	incromontal oncodor	0: non line-saving;
	incremental encoder	1: line-saving;
P00-09	Absolute encoder	Range: 0-1
100-09		0: Tamagawa encoder

		1: Nikon encoder			
P00-10	Incremental encoder lines	Default set			
P00-11	incremental encoder Z pulse electric angle	Default set			
P00-12	Rotor initial angle 1	Default set			
P00-13	Rotor initial angle 2	Default set	Default set		
P00-14	Rotor initial angle 3	Default set			
P00-15	Rotor initial angle 4	Default set			
P00-16	Rotor initial angle 5	Default set			
P00-17	Rotor initial angle 6	Default set			
P00-20 P00-21	Display settings on power-on interface RS232 communication baud rate selection	Set range:0-100; Default:100. Set by customer It shows operation status while driver power-on if set value to 100. Other parameter refer to 8.3 chapter. For example: If want driver show d08.F.SP, please set value to 8. Set range: 0-3; Default:2 Choose baud rate to communicate with PC: 0: 9600 1: 19200 2: 57600			
P00-23	slave station	Set range: 0-255; Default:1; Set according to device required.			
		Set range: 0-7; Default: 2.			
	Modbus	0:2400	4:38400		
P00-24	communication baud	1:4800	5:57600		
	rate	2:9600	6:115200		
		3:19200	7:25600		

		Set range: 0-3; Default: 0.			
P00-25	Calibration method	0: no calibration, 2 stop bit.			
		1: even calibration, 1 stop bit.			
		2: odd calibration, 1 stop bit.			
		3.no calibration, 1 stop bit.			
	modbus	Set range: 0-100; default:0.			
P00-26	Communication	Response standard while set value is 0: And will response related to the			
	response delay	value while it be set.			
		Set range:0-2: Default:1			
		0: Reserve			
P00-28	Modbus compatible	1: default			
		2: Compatible with Chisu protocol (OX11and 16E address)			
		set range: 0.1: default: 0			
	Modbus absolute	Read absolute position value 84D/84E			
P00-29	encoder feedback style	0: 84D is cycle amount $84E$ is single cycle amount			
		U. 64D is cycle amount. 64E is single cycle amount.			
		Set range: 0-2.			
P00-30	Braking resistor				
	setting	1: use outside resistor.			
		2: No braking resistor.			
P00-31	Outsider braking	Setting range: 0-65536, Unit: 10W.			
	resistor power	Set value according to outsider braking resistor. For example: set 4, it			
		means resistor power is 40W.			
P00-32	Outsider braking	Setting range :0-1000 Unit: ohm.			
100 32	resistor value	Set value according to outsider braking resistor			
	regeneration open	Setting range: 0-1;			
P00-33	circuit, Short-circuit	0: Close regeneration open-circuit			
	detection enable	1: Open regeneration open-circuit, short-circuit detection enable.			
D00.40	Over temperature	Setting range: 0-1			
P00-40	protection setting	0: Close over temperature protection			

		1: Open over temperature protection			
P00-41	Control power failure protection settings	Setting range: 0-1 0: Close control power failure protection 1: Open control power failure protection			
P00-46	Speed inconsistency alarm detection time setting	Setting range: 0-65536; Unit: ms. 0: Close speed inconsistency alarm detection function. 1-65535: Speed inconsistency alarm detection time setting, When the speed error reaches P04-12 set value, and the time reaches the set time,			
		the drive will alarm AL.423			

8.2.2 P01-xx Major control parameter

Para code	Name	Description				
		Setting rang	e:0-6			
		0: Position control mode.				
		1: Speed cor	ntrol mode.			
		2: Torque co	ntrol mode			
		3:Speed, tor	que control mode. Nee	d to use an external input port in	CN1	
		to switch, set the selected DI port input port function selection to 5				
		(control mo	de switching). Control th	ne logic state of the port to switch	1 the	
	Control mode setting	control mod	e.			
P01-01			Port logic	Control mode		
			Valid	Speed mode		
			Invalid	Torque mode		
		4: Position and speed control mode. Need to use an external input				
		CN1 to switch, set the selected DI port input port function selection to 5				
		(control mo	de switching). Control th	e logic state of the port to switch	the	
		control		e.		_
			Port logic	Control mode		
			Valid	Position mode		

			Invalid	Speed mode		
		5: Position and torque control mode. Need to use an external input port in				
		CN1 to switch, set the selected DI port input port function selection to 5				
P01-01	Control mode setting	(control mode switching). Control the logic state of the port to switch the				
	control mode setting	control mode.				
			Port logic	Control mode	_	
			Valid	Position mode	_	
			Invalid	Torque mode		
		6: servo electric screwdriver				
		Setting ran	ge:0-2			
		0: Manual a	djustment of rigidity			
		1: Standard	d mode automatically adj	justs rigidity. In this mode, parame	eters	
		P02-00, P02	-01, P02-10, P02-11, P02	-13, P02-14, P08-20 will be set		
		automatical	ly according to the stiffne	ess level set by P01-03, and these		
		parameters can not be adjusted by manual. The following parameters are				
		set by the user:				
		P02-03 (speed feedforward gain), P02-04 (speed feedforward smoothing				
		constant).				
		2: Positioning mode automatically adjusts rigidity. In this mode,				
501.03	Real time automatic	parameters	P02-11, P02-13, P02-14, P08-20 w	/ill		
P01-02	adjustment mode	be set automatically according to the rigidity level set by P01-03. and				
		these parameters can not be adjusted by manual The following				
		parameters will be fixed and cannot be changed:				
		P02-03 (speed feedforward gain), 30%				
		P02-04 (speed feedforward smoothing constant).0.5				
		3: Automatically adjust the rigidity 2. In this mode, parameters P02-00,			0,	
		P02-01, P02	-10, P02-11, P02-13 will	be set automatically according to	the	
		rigidity level	set in P01-03.			
		The followin	g parameters are set by	the user: P02-03 (speed feedforwa	ard	
		gain), P02-14 (speed integral constant 2), P08-20 (torque command filter			ter	
		constant 1),	P08-21 (torque comman	d filter constant 2)		
	Automatically adjust	Setting ra	unge: 0-31			
P01-03	the rigidity setting	Built-in 32 kinds of gain parameters. It works when P01-02 is set to 1, 2, or				

		3. It can be called directly according to the actual situation. The larger the			
		set value, the stronger the rigidity.			
		Setting range: 0-100, unit: times			
		Set the load inertia ratio to related motor. The setting method is as			
D01.04	Determine entire metio	follows:			
P01-04	Rotor mertia ratio	P01-04 = Load inertia / motor inertia			
		This inertia ratio can use the value after AF-J-L automatic inertia			
		recognition, write the recognized value into the parameter			
		Setting range: 0-1			
	Constant worth a diafter	0: The motor is in a free state after overtravel, and only receives signals			
P01-10		running in the opposite direction			
	overtraver	1: The motor is locked after overtravel and only receives signals in the			
		opposite direction.			
	Dynamic brake delay	Setting range:0-150, Unit:ms.			
P01-20		When the braking conditions are met, the dynamic brake action delay			
		time			
	Disable dynamic	Setting range: 0-1;			
P01-21	brake when main	0: Open dynamic brake function			
	power is off	1: Close dynamic brake function			
	Disable dynamic	Setting range: 0-1			
P01-22	brake when servo	0: Open dynamic brake function;			
	OFF.	1: Close dynamic brake function.			
	Disable dynamic	Setting range: 0-1			
P01-23	brake when fault	0: Open dynamic brake function;			
	alarm.	1: Close dynamic brake function.			
	Disable dynamic	0-1 Setting range: 0-1			
P01-24	brake when	0: Open dynamic brake function;			
	overtravel	1: Close dynamic brake function.			
	Brake	Setting range: 0-255, unit: ms			
P01-30	command-Servo OFF	When enabling: The drive will only receive the position command after			
	delay time (brake	the time of P01-30 is executed under the enable command is executed.			

	open delay)	When the enable is off: When the motor is at a static state, after the close		
		enable command is executed, the time after the brake is closed and the		
		motor becomes non-energized.		
	Speed limit value of	Setting range: 0-3000, unit: rpm Motor speed threshold when the brake output is active when the motor is		
P01-31	brake command	rotating. Less than this threshold, the brake output command is valid,		
	output	otherwise it will wait for P01-32 time, the brake output command is valid.		
	Servo OFF-brake	Setting range: 0-255, unit: ms		
P01-32	command waiting	The maximum waiting time for the brake output when the motor is		
	time	rotating.		
P01-40	Runaway detection enabled	Prevent the motor from running out of control and abnormal rotation. 0: Close enable.		
	chubicu	1: Open enable.		

8.2.3 P02-xx Gain assorted parameter

Para code	Name	Description		
		Setting range: 0-3000.0, unit: 1 / S		
		Position loop regulator scale gain. The larger the parameter value set, the		
D02.00	Position control gain	higher the gain ratio is, the greater the stiffness is, the smaller the		
P02-00	1	position tracking error will be, and the faster the response. However, too		
		large a parameter can easily cause vibration and overshoot.		
		This parameter is for steady state response.		
		Setting range: 0-3000.0, unit: 1 / S		
		Setting range: 0-3000.0, unit: 1 / S Position loop regulator scale gain. The larger the parameter value set, the		
502.04		Setting range: 0-3000.0, unit: 1 / S Position loop regulator scale gain. The larger the parameter value set, the higher the gain ratio is, the greater the stiffness is, the smaller the		
P02-01	Position control gain2	Setting range: 0-3000.0, unit: 1 / S Position loop regulator scale gain. The larger the parameter value set, the higher the gain ratio is, the greater the stiffness is, the smaller the position tracking error will be, and the faster the response. However, too		
P02-01	Position control gain2	Setting range: 0-3000.0, unit: 1 / S Position loop regulator scale gain. The larger the parameter value set, the higher the gain ratio is, the greater the stiffness is, the smaller the position tracking error will be, and the faster the response. However, too large a parameter can easily cause vibration and overshoot.		
P02-01	Position control gain2	Setting range: 0-3000.0, unit: 1 / S Position loop regulator scale gain. The larger the parameter value set, the higher the gain ratio is, the greater the stiffness is, the smaller the position tracking error will be, and the faster the response. However, too large a parameter can easily cause vibration and overshoot. This parameter is for dynamic response.		
P02-01	Position control gain2 Speed feedforward	Setting range: 0-3000.0, unit: 1 / S Position loop regulator scale gain. The larger the parameter value set, the higher the gain ratio is, the greater the stiffness is, the smaller the position tracking error will be, and the faster the response. However, too large a parameter can easily cause vibration and overshoot. This parameter is for dynamic response. Setting range: 0-100.0, unit: 1.0%		

		set, the smaller the system position tracking error and the faster the		
		response. However, if the feedforward gain is too large, the position loop		
		of the system will be unstable, which will easily cause overshoot and		
		vibration.		
		Setting range: 0-64.00, unit: ms		
502.04	Speed feedforward	This parameter is used to set the speed loop feedforward filtering time		
P02-04	smoothing constant	constant. The larger the value set, the larger the filtering effect, but at the		
		same time the phase lag increases.		
		Setting range: 1.0-2000.0, unit: Hz		
		The larger the speed proportional gain is, the larger the servo stiffness is		
		and the faster the speed response is. However, if it is too large, it is easy to		
P02-10	1Speed proportional	generate vibration and noise.		
	gain 1	Under the condition that the system does not oscillate, increase this		
		parameter value as much as possible.		
		This parameter is for a static response.		
	Speed integral constant 1	Setting range: 1.0-1000, Unit: ms.		
		Speed regulator integration time constant. The smaller the setting value,		
		the faster the integration speed, the greater the stiffness, and the		
P02-11		vibration is too easy to produce noise if it is too small.		
		When the system does not oscillate, reduce this parameter value as mu		
		as possible.		
		This parameter is for steady state response.		
		Setting range: 0-100.0, unit: 1.0%		
		When set to 100.0%, the speed loop adopts PI control, and the dynamic		
	Decude differential	response is fast; when set to 0, the speed loop integral effect is obvious,		
002.42	foodforward	which can filter low-frequency interference, but the dynamic response is		
P02-12		slow.		
	coefficient 1	By adjusting this coefficient, the speed loop can have a better dynamic		
		response, and it can increase the resistance to low-frequency		
		interference.		

		Setting range: 1.0-2000.0, unit: Hz		
		The larger the speed proportional gain is, the larger the servo stiffness is		
		and the faster the speed response is. However, if it is too large, it is easy to		
P02-13	speed proportional	generate vibration and noise.		
	gainz	Under the system has no vibration, increase this parameter value as much		
		as possible.		
		This parameter is for dynamic response.		
		Setting range: 1.0-1000.0, unit: ms		
		Speed regulator integration time constant. The smaller the setting value,		
		the faster the integration speed, the greater the stiffness is, and the		
P02-14	Speed Integral	vibration is too easy to produce noise if it is too small.		
	constant 2	Under the system has no vibration, reduce this parameter value as much		
		as possible.		
		This parameter is for dynamic response.		
		Setting range: 0-100.0, unit: 1.0%		
		When set to 100.0%, the speed loop PI control, and the dynamic response		
	Pseudo-differential	is fast; when set to 0, the speed loop integral effect is obvious, which can		
P02-15	feedforward control	filter low-frequency interference, but the dynamic response is slow.		
	coefficient 2	By adjusting this coefficient, the speed loop can have a better dynamic		
		response, and at the same time, it can increase the resistance to		
		low-frequency interference.		
D02 1C	Speed integral error	Setting range: 0-32767		
P02-10	limit value	Speed integral error limit value		
	Torque foodforward	Setting range: 0-30000, unit: 1.0%		
P02-19		Set the current loop feedforward weighting value. This parameter adds		
	gam	the current loop after weighting the differential of the speed command.		
	Tanana food formand	Setting range: 0-64.00, unit: ms		
P02-20	smoothing constant	This parameter is used to set the torque feedforward filtering time		
	SHOULING CONSIGNL	constant.		

		Setting r	ange: 0-10	
		The condi	tion to set the 1s	st and 2nd gain switching mode
		value	Switching	Remark
			condition	
		0	fix to the 1st	P02-00、P02-10、P02-11、P02-12
			gain	
		1	fix to the	P02-01、P02-13、P02-14、P02-15
			2nd gain	
		2	Use DI input	Need to set the DI port to 9 (gain switching
			switching	input)
				Invalid: first gain
				Effective: second gain
		3	Big torque	When the torque command is greater than
	Coin awitaking mode		command	the threshold (determined by P02-31 and
P02-30			value	P02-32), it switches to the second gain.
F02-30	Gain switching mode			When it is less than the threshold and
				exceeds the P02-33 delay setting, it switches
				to the first gain.
		4	Speed	When the speed command change is greater
			command	than the threshold (determined by P02-31
			changes a	and P02-32), it switches to the second gain.
			lot	When it is less than the threshold and
				exceeds the P02-33 delay setting, it switches
				to the first gain.
		5	Big speed	When the speed command is greater than
			command	the threshold (determined by P02-31 and
			value	P02-32), it switches to the second gain.
				When it is less than the threshold and
				exceeds the P02-33 delay setting, it switches
				to the first gain.
		6	Large	When the position deviation is greater than

P02-30		7	position deviation There is position	the threshold (determined by P02-31 and P02-32), switch to the second gain. When it is less than the threshold and exceeds the P02-33 delay setting, it switches to the first gain. Switch to the second gain when there is a position command. When the position
			command	command ends and the P02-33 delay setting is exceeded, it switches to the first gain.
	Gain switching mode	8	Incomplete positioning	Switch to the second gain when positioning is not completed. When the positioning is completed and the P02-33 delay setting is exceeded, it switches to the first gain.
		9	Actual speed is big	Switch to the second gain when the actual speed is greater than the threshold (determined by P02-31 and P02-32). When it is less than the threshold and exceeds the P02-33 delay setting, it switches to the first gain.
		10	With position command + actual speed	Switch to the second gain when there is a position command. When there is no position command and the actual speed is less than the threshold (determined by P02-31 and P02-32), and when the delay setting of P02-33 is exceeded, it switches to the first gain.
P02-31	Gain switching level	Setting rad Judgment Torque un Speed uni Position u	nge: 0-20000 threshold when it: 1000bit = 259 t: 1000bit = 200 nit: 131072bit po	gain is switched. 6 of rated torque rpm er revolution

	Gain switching	Setting range: 0-20000				
		Hysteresis level at gain switching				
P02-32		Torque unit: 1000bit = 25% of rated torque				
	hysteresis	Speed un	it: 1000bit = 200 rp	m		
		Position (unit: 131072bit per	revolution		
		Setting ra	ange: 0-1000.0, unit	:: ms		
P02-33	Gain switching delay	When sv	vitching from the s	second gain to the first gain, the time from		
		when the	e trigger condition is	s met to the actual switching.		
		Setting ra	ange: 0-1000.0, unit	:: ms		
P02-34	Position gain	Time for	position control g	ain 1 to smoothly switch to position control		
	switching time	gain 2				
		Setting	range: 0-4			
		Set the conditions of speed loop PI control and P control				
		value	Judge	Remark		
			condition			
		0	Torque	When the torque command is less than		
			command	P02-41, the threshold is set to PI control,		
				while it is bigger than P02-41, then set to		
	Mode switch selection			P control.		
		1	Speend	When the speed command is less than		
P02-40			command	P02-41, the threshold is set to PI control.		
				If the speed command is greater than		
				P02-41, the threshold is set to P control.		
		2	Acceleration	When the acceleration is less than		
				P02-41, the threshold is set to PI control.		
				If the acceleration is greater than P02-41,		
				the threshold is set to P control.		
		3	Position	When the position deviation is less than		
			deviation	P02-41, the threshold is set to PI control.		
				If the position deviation is greater than		

				P02-41, the threshold is set to P control.			
		4	Modeless	Speed loop maintains PI control and no			
			switch	longer switches			
		Setting ra	Setting range: 0-20000				
		Set the threshold for switching.					
P02-41	Mode switch level	Torque unit: 1000bit = 25% of rated torque					
		Speed unit: 1000bit = 200 rpm					
		Position unit: 131072bit per revolution					
	-	Setting range: -100.0-100, unit: 1.0%					
P02-50	lorque command	Valid in position control mode. This value is superimposed on the torque					
	added value	reference value and is used for vertical axis static torque compensation.					
	Forward torque	Setting ra	Setting range: -100.0-100.0, unit: 1.0%				
P02-51	compensation	Valid in p	osition control mod	le. For compensating forward static friction			
	Reverse torque	Setting ra	ange: -100.0-100.0,	unit: 1.0%			
P02-52	compensation	Valid in p	osition control mod	le. Used to compensate reverse static friction			

8.2.4 P03-xx Position parameters

Para code	Name	Description
P03-00	Source of position command	0: pulse command1: Given the number, use it when communicating with control
P03-01	Command pulse mode	 0: Quadrature pulse command (90° phase difference two-phase pulse) 1: Direction+ pulse command 2or 3:Double pulse command (CW+CCW)
P03-02	Instruction Pulse Input Terminal	Use to specify the pulse input port in the CN1 port 0: low speed pulse port 1: high speed pulse port
P03-03	Instruction Pulse Inversion	Used to adjust the direction of the pulse instruction count 0: Normal 1: In The Opposite Direction

P03-04	Position Pulse filter setting	Set range : 0-1 Unit 0: 0.1us. 1: 1.6us
P03-05	Positioning completion criteria	 0:Output when position deviation is less than P03-06 setting value 1: Output when position is given, and output when position deviation is less than P03-06 setting value 2: Output when position is given (after filtering), and output when position deviation is less than P03-06 setting value
P03-06	Location complete range	Set range:0-65535 Unit: encoder unit Use to set a threshold value for positioning completion output. When the absolute value motor is used, the encoder is calculated at 131072 bit per turn. Using incremental encoder motor, each turn is calculated by the number of encoder lines * 4.
P03-07	Position feedback format	Set range:0-1 0: Incremental format 1: Multi-loop absolute value format
P03-09	Number of instruction pulses per turn of motor	Setting range: 0-65535 Absolute encoder motor is effectively used to set motor rotation number of instructions pulse. When this parameter is set to 0, P03-10 and P03-11 are valid
P03-10	Electron Gear 1 molecule	When absolute value motor is used, see 6.1.3 example of calculation method of electronic gear, ratio $G = \frac{Molecule}{Molecule} = \frac{E \times 4}{4}$ Calcul etionformula of electronic gear ratio of incremental motor: <i>C</i> : Encoder line; <i>P</i> : No.of input pulse per turn Example : The number of encoder lines is 2500;
P03-11	Electronic gear 1 Denominator	The number of input pulse per turn; Find the ratio of electronic genr? $G = \frac{C \times 4}{P} = \frac{2500 \times 4}{3200} = \frac{10000}{3200} = \frac{25}{8}$ Note: 20BThe molecule of encoder is 131072 17B The molecule of encoder is 160000

P03-12	Electron Gear 1 molecular high position	Set range :0-32767 Use this can expand the Electronic gear ratio Molecule value=P03-12*10000+P03-10
P03-13	Electronic gear. 2 molecules	See P03-10
P03-14	Electronic gear. 2 Denominator	See P03-11
P03-15	Position deviation setting is too big	Setting range: 0-65535, Unit: Instruction Unit * 10 set the number of pulse to allow deviation, more than the set value will alarm. EXAMPLE: Setting a value of 20, the drive alerts AI. 501 when the follow deviation exceeds 20 * 10(position deviation is too large)
P03-16	Position Instruction smoothing filter constant	Setting range: 1000, in Ms Setting time constant of position instruction smoothing filter
P03-20	Position feedback source	Setting Position Feedback Source 0: Encoder 1: Raster scale
P03-22	Increment encoder output pulse frequency division ratio molecule	When using incremental encoder, set the number of output pulses of cN1 port. P03-23 should be less than or equal to p03-22, calculation formula:
P03-23	Delta encoder output pulse frequency divider	$G = \frac{\text{Molecule}}{\text{Denominator}} = \frac{C \times 4}{P \times 4}$ C: Encoder line P: Desired output A, B pulses per revolution Example: The number of encoder lines is 2500; The number of A, B pulses per revolution is 500 ; $G = \frac{C \times 4}{P \times 4} = \frac{2500 \times 4}{500 \times 4} = \frac{5}{1}$

0755-26509689

	Absolute number of	Set Range: 0-60000		
D02 25	output pulses per	Set absolute value motor rotation around, A, B frequency pulse output		
P03-25	revolution of the	number. EXAMPLE: set the value of 2500, then each rotation of the motor,		
	motor	A and B signal output 2500 pulses		
		Set the grating ruler Input A, b phase sequence is reversed		
P03-30	LINEAR encoder	NO		
		yes		
		Set the effective level of grating ruler input Z signal		
P03-31	Polarity of Z pulse of	0: low level		
	linear encoder	1: High level		
		Set CN1 terminal in the frequency-division Output Signal Source 0: Pulse		
		output, alarm not output		
P03-40	Output pulse source	1: Motor output		
		2: Pulse Output		
		3: Grating Ruler		
		Set CN1 TERMINAL FREQUENCY OUTPUT SIGNAL Z effective level 0: Low		
P03-42	Output Z pulse Polarity	Level		
		1: High Level		
	Digital quantity	Setting range: 0-1		
P03-45	instruction cache	0: No caching (immediate execution)		
	mode	1: CACHING (new data executed after last data execution)		
	Maximum speed of			
	motor at digital	Setting range: 0-6000		
P03-46	position command	Sets the maximum speed of the motor when the Digital Position		
	run time	Command runs		

8.2.5 P04-xx Speed parameter

Para code	Name		Description
P04-00	Speed	instruction	0: External Analog Instruction
	source		1: Digital Instruction (Parameter Setting)

		2: Digital Instruction (Communication)		
		3: Internal Multiple instruction sets		
		The polarity relation used to adjust analog quantity is		
D04.01	Speed instruction	0: Normal		
P04-01	analog reverse	1: Polarity is reversed		
DO4 02	Digital speed given	Setting range:-6000-6000, Unit: rpm		
P04-02	value	when P04-00 is set to 1, P04-02 is the speed control setting		
		0: non-position Clamp Function		
		1: Position Clamp function		
	Zara speed position	When speed control mode is applied and the following conditions are		
P04-03	clamp function	met, enter Position lock mode		
		A: P04-03 set to 1		
		B: Speed instruction absolute value less than P04-04 SET THRESHOLD C:		
		External Input Port function set to 10(zero fixed) and in input valid state		
	Zero speed position]Setting range: 0-6000, unit: rpm		
P04-04	clamp speed	Setting speed instruction threshold to trigger zero speed position clamp		
	threshold	function		
	Over enaded element	Set range : 0-6500, Unit: rpm		
P04-05	Over speed alarm value	Setting the maximum allowable RPM above the setting will trigger a 420		
		overspeed alarm		
D04.00	Former and successful line in	Set range: 0-6000, Unit: rpm		
P04-06	Forward speed limit	Limit forward speed of motor		
004.07	Develope and the it	Set range: -6000-0, Unit: rpm		
P04-07	Reverse speed limit	Limit reverse speed of motor		
	_	Set range: 0-200.0, Unit: rpm		
P04-10	Zero velocity	Set Zero speed detection threshold, motor speed below the threshold can		
	detection value	be output through the output port "zero speed motor output" signal		
	Rotation detection	Set range: 0-200.0, Unit: rpm		
P04-11	value	Set Motor rotation detection threshold, motor rotation speed higher than		

		the value can be displayed through the LED panel status				
P04-12	Consistent range of velocity	Set range: 0-200.0, Unit: rpm Set speed consistent signal threshold value, when motor speed and instruction speed difference in the threshold value range, can output "speed consistent output" signal through the output port				
P04-14	Acceleration time	Set range Set the ac	: 0-1000	0,Unit: n time in :	1ms/1000rpm speed control	
P04-15	deceleration time	Set range Set the de	Set range: 0-10000, Unit: 1ms/1000rpm Set the deceleration time in speed control			
P04-30 P04-37	1-8 inside speed set	Set range Parameter speed 8, - loop con defined a setting the shown in DI13 0 1 0 1 0 1 0 1 0 1 0 1	: -6000- rrs P04-30 the interr trol, P04- s 13,14,11 ne input p the follow DI14 0 0 1 1 0 0 1 1 0 0 1 1	-6000, 1 to P04-3 hal speed -00 SET : 5 internal bort funct ving table DI15 0 0 0 0 1 1 1 1 1	Jnit: rpm 7, respectively set switch method is a 3, the correspond rotation speed sw tion to 13,14,15 or Parameter P04-30 P04-31 P04-32 P04-33 P04-33 P04-35 P04-36 P04-37	internal speed 1 to internal as follows: when the speed ing input port function is itching, which is realized by n-off state combination, as

8.2.6 P05-xx Torque parameter

Para code	Name	Description
P05-00	Torque instruction	0: External Analog Instruction (speed limit set by P05-02)
	source	1: Digital Instruction (speed limit set by P05-02)

		2: External Analog Instruction (speed limit set by speed analog
		instruction)
		3: Digital Instruction (speed limit set by speed analog instruction)
		Used to adjust the Torque Direction
P05-01	Inverse Torque	0: Normal
	instruction analog	1: Direction reverse
	Torque mode speed	Setting range: 0-maximum speed, unit: RPM
	limit given value	set the maximum speed of motor when torque mode, prevent no-load
P05-02	innit given value	motor speed too high cause mechanical damage torque control mode
		effective
DO5 03	Digital Torque given	Setting range:-300-300, unit% P05-03 is the initial value for digital
P05-03	value	torque when P05-00 is set to 1
	Torque limiter source	Source for adjusting Torque Limits 0: Internal Digital (set by P05-10,
		P05-11 or P05-12, P05-13)1: External Analog (given by external analog
P05-05		input T-REF). In this mode, the positive and negative limits are the
		same. 2: The torque limit is limited by the parameter P05-03
	Torque limit check out	
P05-06	delay	Setting range: 0-10000, unit: Ms Setting DO port output torque limit
		detection output signal delay time
		Setting range: 0-300.0, unit: 1.0% limit motor forward output, 100
	Internal Forward Torque	means 1 times Torque, 300 means 3 times torque when the torque
P05-10	limit	output reaches the limit value, the output signal can be detected
		through DO port output torque limit
		Setting range:-300.0-0, unit: 1.0% limit motor reverse output, 100
	Internal reverse torque	means 1 times Torque, 300 means 3 times torque when the torque
P05-11	limit	output reaches the limit value, the output signal can be detected
		through the DO port output torque limit
	External Positive Torque	Setting range: 0-300.0, unit: 1.0%
P05-12	limit	This function, you need to use one of the external input port in CN1 to

		switch, the choice of the Di port input port function set to 7(positive					
		side external torque limit) . The control mode can be switched by					
		controlling the logical state of the port.					
		Port logic Torque limited value					
			Valid	External Limited			
				value P05-12			
			Invalid	Internal Limited			
				value P05-10			
	system default torque li	mit value					
		is P05-10. W	/hen the torque output r	eaches the limit value, th	e output		
		signal can be	e detected through the D	O port output torque lim	nit		
		Setting range: 0-300.0, unit: 1.0%					
		This feature	requires the use of an ex	ternal input port in CN1	to switch,		
		the choice of the DI port input port function set to 8(reverse side					
		external torque limit) . The control mode can be switched by controlling					
		the logical state of the port.					
	External reverse Torque limit						
			Port logic	Torque limited value			
P05-13			Valid	External Limited			
				value P05-13			
			invalid	Internal Limited			
				value P05-11			
		If the DI function is not assigned, the default torque limit amplitude of					
		the system is p05-11.When the torque output reaches the limit value,					
		the output signal can be detected through the Do port output torque					
		limit					

8.2.7 P06-xx I/O Parameter

Para code	Name	Description
P06-00	DI1Effective level of input	Set range: 0-4, Factory set:0

	port	Set valid input of di1 input port of cN1
		0: valid for low level (optocoupler on)
		1: Valid for high level (optocoupler off)
		2: Rising edge effective
		3: Falling edge effective
		4: Both rising and falling edge are effective
		Set range: 0-24, Factory set: 1 servo ON
		Set the function of di1 input port of cN1
		0: invalid pin
		1: servo ON
		2: Alarm clear
		3: Forward over travel signal input
		4: Reverse over travel signal input
		5: Control mode switching
		6: Electronic gear input
		7: Positive side external torque limit
		8: Reverse side external torque limit
		9: Gain switching input
P06-01	DI1 Input port function	10: Zero fixed input
	selection	11: Command pulse inhibit input
		12: Encoder absolute value data required input
		13: Internal set speed switch input 1
		14: Internal set speed switch input 2
		15: Internal set speed switch input 3
		16: Position command clear input
		17: Pole detection input
		18: Command pulse input rate switching input
		19: Gantry simultaneous movement enable
		20: Gantry alignment clear signal
		21: origin switch signal
		22: origin reset start signal
		23: speed analog command direction input

		24: torque analog command direction input
P06-02	DI2 Effective level of input port	see P06-00
P06-03	DI2 Input port function selection	see P06-01, factory set: 2 Alarm clear
P06-04	DI3 Effective level of input port	seeP06-00
P06-05	DI3 Input port function selection	seeP06-01, factory set: 3 Forward overflight signal input
P06-06	DI4 Effective level of input port	see 06-00
P06-07	DI4 Input port function selection	see P06-01, factory set: 4 reverse overflight signal input
P06-08	DI5 Effective level of input port	see P06-00
P06-09	DI5 Input port function selection	see P06-01, factory set: 7 Forward turning external torque limit
P06-10	DI6 Effective level of input port	see P06-00
P06-11	DI6 Function choose of input port	see P06-01, factory set: 8 Reverse turning external torque limit
P06-12	DI7 Effective level of input port	see P06-00
P06-13	DI7 Input port function selection	see P06-01, factory set: 5 Control mdoe swift
P06-16	DI8 Effective level of input port	see P06-00
P06-17	DI8 Input port function selection	see P06-01, factory set : 16 Position command zero input
P06-20	DO1 Effective level of output port	Set range: 0-1, factory set:1 0: When the State is valid, optocoupler cut-off

		1: When the State is valid, optocoupler on
		Set range: 0-13, factory set: 3 Servo ready for output
		0: Pin Invalidation
		1: Alarm output
		2: Lock Open Output
		3: Servo Ready Output
		4: Positioning Completed Output
		5: Positioning close to output
P06-21	DOI Function choose of	6: Speed consistent output
	output port	7: Motor Zero speed output
		8: Torque limit detected output
		9: Speed limit detected output
		10: Warning output
		11: Instruction Pulse Input Rate Switching output
		12: origin regression complete output
		13: electrical origin regression complete output
DOC 22	DO2 Effective level of	
P06-22	output port	see P06-20
DOC 33	DO2 Function choose of	and DOC 21. fortom ant - 2 Decks open subsut
P06-23	output port	see Pob-21, Tactory set: 2 Brake open output
DOC 34	DO3 Effective level of	
P06-24	output port	see P06-20
DOC 25	DO3 Function choose of	cos DOC 21 fostom est 1 Alarm sutruit
P00-25	output port	
DOC 20	DO4 Effective level of	P2C 20
P06-26	output port	see PUb-2U
P06-27	DO4 Function choose of	and DOC 21. fortom anti-Algorithm complete subjut
	output port	see Pob-21, Tactory set: 4 Location complete output
P06-28	DO5 Effective level of	
	output port	see Pub-20
P06-29	DO5 Function choose of	see P06-21, factory set: 8 Torque limit check output

	output port	
P06-40	Speed analog instruction	Set range: 10-2000, Unit 1rpm/V Set the CN1 input between the simulation command and the Speed
	input gain	Control Command Coefficient Example: 500 on behalf of Each v corresponding to 500 RPM
P06-41	Speed analog command filter constant	Set range: 0—64.00, Unit : ms Set the time factor of analog instruction filtering for CN1 input
P06-42	Velocity analog instruction offset	Set range: -10.000—10.000, Unit : V Set The simulated instruction zero offset for CN1 input
P06-43	Torque simulation instruction gain	Set range: 0—100.0, Unit 1% Set the coefficient between the analog command input by cN1 and the speed control command For example, 30.0 represents 30% of rated torque per V
P06-44	Torque analog instruction filter constant	Set range: 0—64.00, Unit : ms Set the time factor of analog instruction filtering for CN1 input
P06-45	Torque analog instruction offset	Set range: -10.000—10.000, Unit V Set The simulated instruction zero offset for CN1 input
P06-46	Speed analog instruction dead zone	Set range: 0—10.000, Unit V Set the dead time voltage value of the speed analog command. When the analog quantity is set within the range of the positive and negative values, the system will default to zero
P06-47	Torque analog instruction dead zone	Set range: 0–10.000, Unit V Set the dead-time voltage value of the torque simulation instruction. When the analog is given in the range of the positive and negative values, the system defaults to zero

8.2.8 P08-xx High function Parameter

.

Para	Name	Description
code		

P08-01	Load rotation routine identification mode Maximum speed of inertia	Set range: 0-1 0: valid 1: invalid Set range: 100-2000, Unit: rpm
P08-02	identification	The maximum speed of the motor in off-line inertia identification
P08-03	Inertia identification acceleration and	Set range: 20-800, Unit: ms The acceleration and deceleration time of motor when off-line
	deceleration time	inertia identification
P08-04	Wait time after single inertia identification is completed	Set range: 50-10000, Unit : ms When the moment of inertia identification is off-line, the waiting time after the single moment of inertia identification is completed
P08-05	The number of motor rotations required to complete a single inertia	This parameter is based on P08-02, P08-03, P08-04 set conditions automatically generated the value of the rotation circle
P08-11	Adaptive notch mode selection	Set range: 0-4 0: The parameters of the third and fourth notch are no longer automatically updated and are saved to the current value. However, manual input of 1:1 adaptive notch filter is valid, and the parameters of the third notch filter are automatically updated. Manual input of 2:2 adaptive notch filter is valid, and the parameters of the third and fourth notch filters are automatically updated, can Not Manually Input 3: Only Detect Resonance Frequency 4: Clear the third, the fourth notch filter parameters, restore to the factory settings
P08-13	Vibration detection threshold of adaptive notch filter	Set range: 0-7 This parameter sets the vibration detection sensitivity of adaptive notch filter, and the smaller the parameter value, the more sensitive the detection sensitivity is

		0: TURN OFF Speed Observer
P08-17	Speed monitor	1: TURN ON SPEED OBSERVER
		2: Speed, Torque Observer
		Set range: 0-25.00, Unit: ms
P08-19	Feedback speed low-pass filter constant	Feedback speed low-pass filter time constant, when the motor
		running when there is a howling, the value can be set up properly
		Set range: 0-25.00, Unit: ms
P08-20	Torque command filter	Torque instruction filter time constant 1, when there is a motor
	constant1	running, the value can be appropriately set to large.
		Set range: 0-25.00, Unit: ms
P08-21	Torque command filter	Torque instruction filter time constant 2, when there is a motor
	constant2	running, the value can be set appropriately large.
		Set range: 0-100.0
	Disturbance torque compensation gain	Observed Gain Coefficient of disturbing torque. The larger the value
P08-25		is, the stronger the anti-disturbance Torque is, but the action noise
		may also be increased.
		Set range: 0-25.00, Unit: ms
		The bigger the value is, the stronger the filtering effect is, and the
P08-26	Disturbance torque	action noise can be suppressed. However, if the disturbance is too
	filtering time constant	large, the phase delay will result and the disturbance torque will be
		suppressed.
	Notch Filter 1 frequency	Set Range: Set Range: 300-5000, Unit: HZ
P08-30		Notch 1 center frequency Set to 5000, notch invalid
P08-31	Notch Filter 1 width	Set range: 0-20
		Set Range: 0-20
		Notch 1 notch width level is the ratio of the width to the central
		frequency
P08-32	Notch Filter 1 depth	Set range: 0-99
		The notch depth grade of Notch 1 is the ratio between the central
		frequency input and output of Notch 1. The larger the parameter,
		the smaller the notch depth and the weaker the effect
Just motion control

P08-33	Notch Filter 2 frequency	same as P08-30
P08-34	Notch Filter 2 width	same asP08-31
P08-35	Notch Filter 2 depth	same asP08-32
P08-36	Notch Filter 3 frequency	same asP08-30
P08-37	Notch Filter 3 width	same asP08-31
P08-38	Notch Filter 3 depth	same asP08-32
P08-39	Notch Filter 4 frequency	same asP08-30
P08-40	Notch Filter 4 width	same asP08-31
P08-41	Notch Filter 4 depth	same asP08-32

8.3 List of surveillance items

Display		Description	
serial	Display item		Unit
number			
		This parameter can monitor the number of pulses	
	Sum of position	sent by the user to the servo driver, which can	
d00.C.P0	instruction pulses	confirm whether there is the phenomenon of	user unit
		missing pulses	
		This parameter can monitor the pulse number of	
d01.F.PU	Sum of position	servo motor feedback. The unit is consistent with	user unit
	feedback pulses	the User Input Instruction Unit	
		This parameter can monitor the pulse number of	
	Number of position	the position lag in the process of the SERVO system.	
d02.E.PU	deviation pulses	The unit is consistent with the User Input	user unit
		Instruction Unit	
		This parameter can monitor the number of pulses	
	Sum of pulses at a given position	sent by the user to the servo drive. Unit: 131072 bit	
d03.C.PE		per turn when using absolute value motor. Use	Encoder unit
		Incremental encoder motor, then each turn	
		according to encoder line number * 4 calculate.	
		This parameter can monitor the pulse number of	
d04.F.PE	Sum of position	servo motor feedback. Unit: 131072 bit per turn	Encoder unit
	feedback pulses	when using absolute value motor. Use Incremental	

		encoder line number * 4 calculate.		
d05.E.PE	Number of position deviation pulses	This parameter can monitor the pulse number of the position lag in the process of the SERVO system. Unit: 131072 bit per turn when using absolute value motor. Use Incremental encoder motor, then each turn according to encoder line number * 4 calculate.	Encoder unit	
d06.C.Fr	Pulse Command input frequency	This parameter can monitor the input frequency of external pulse instruction	KPPS	
d07.C.SP	Speed Control Command	trol This parameter can monitor the servo given speed and when the servo motor is running		
d08.F.SP	Motor speed	This parameter can monitor the speed of servo motor when it is running	rpm	
d09. C.tQ	Torque instruction	This parameter can monitor the Torque of the servo motor when it is running	%	
d10. F.tQ	Feedback value of torque This parameter can monitor the Torque of the servo motor when it is running		%	
d11.AG.L	Average torque This parameter can monitor the average torque of the servo motor in the past 10 seconds		%	
d12.PE.L	Peak torque	This parameter can monitor the peak torque of servo motor after power-on	%	
d13.oL	Overload rate	This parameter can monitor the servo motor's load occupancy in the past 10 seconds	%	
d14.rG	Regeneration load rate	This parameter monitors the load rate of the regeneration resistor	%	
d16.I.lo	Input IO status	This parameter can monitor the input port status of CN1. The upper vertical bar represents the high level (optocoupler cut-off), the lower vertical bar represents the low level optocoupler on)	Binary system	
d17.o.lo	Output IO status This parameter can monitor the output port status of CN1. The upper vertical bar represents the high level (optocoupler through), the lower vertical bar represents the low level optocoupler cut-off)		Binary system	

	motor	the motor and rotate 1 turn is 360 degrees	
	Motor UVW phase	This parameter can monitor the phase sequence	
019.HAL	sequence	position of the incremental encoder motor	
	Absolute Value Encoder	This parameter can monitor the feedback value of	Decimal
020.ASS	single-loop value absolute encoder, rotating a circle for 0xffff		system
421 4614	Absolute Value Encoder This parameter can monitor the number of turns of		
021.ASIVI	multi-loop value	the absolute encoder motor	
422.1.1	Monomet of inortio rotio	This parameter can monitor the real-time inertia of	0/
022.J-L	Moment of mertia ratio	the load of the motor	70
d22 dam	Main Circuit Voltage (AC	This parameter can monitor the input voltage value	N/
u23.ucp	value)	of the main circuit	v
			Degree
d24.Ath	Drive temperature	This parameter can monitor the drive temperature	Centigrade
d2E +iE	Cumulative running	This parameter monitors the drive elapsed time, in	cocondo
uzs.ue	time	seconds	seconus
d26.1.Fr	Resonance 1	This parameter can monitor resonance frequency 1	Hz
d28.2.Fr	Resonance 2	This parameter can monitor resonance frequency 2	Hz
d30.Ai1	Analog quantity instruction 1 input voltage(V_REF)	This parameter can monitor the input voltage value of CN1 analog command.	0.01V
d31.Ai2	d31.Ai2 Analog quantity This parameter can monitor the input volta (T RFF)		0.01V

8.4 Auxiliary function

Serial number	Display item	Function	Operation
	item		
		oG JOG trial run	1. Press the M button in the action panel to switch to auxiliary mode
	AF_JoG		AF, operate the Up / Down button to AF, press ENT button to enter
1			the Jog mode of operation. The default Jog speed is 30 RPM.
			2. Press the Up button, and the motor turns forward at 30 R / Min;
			press the Down button, and the motor turns back at 30 R / Min.
			3. Long press ENT button to enter the speed edit menu. Edit the
			speed by using a combination of Up, Down and Left buttons, then

			press ENT for a long time to re enter Jog mode. This setting is not saved after the rollout of Jog mode. 4. Press M to exit Jog mode.
2	AF_run	Force enable operate speed mode	 Press the M button in the action panel to switch to auxiliary mode AF, operate the Up / Down button to AF, press ENT button to enter the working mode. Press the Up button, the motor is rotating, long press the Up button, the motor speed will continue to increase; press the Down button, the motor reverse, long press the Up button, the motor speed will continue to increase. Press the M button to exit the mode.
3	AF_oF1	Automatic Zero Drift calibration for analog input 1 (VCMD)	 Press the M button in the action panel to switch to auxiliary mode AF_xxx, press the Up / Down button to AF_of1, press ENT button to display clr.Ai1. Long press ENT key until finsh flicker appears, that is to complete the automatic calibration of analog input 1 zero drift. (speed analog) Press the M button to exit the mode.
4	AF_oF2	Automatic Zero Drift calibration for analog input 2 (TCMD)	 Press the M button in the action panel to switch to auxiliary mode AF_xxx, press the Up / Down button to AF_of2, press ENT button to display clr.Ai1. Long press ENT key until finsh flicker appears, that is to complete the automatic calibration of analog input 1 zero drift.(torque analog) Press the M button to exit the mode.
5	AF_oF3	U, W current Automatic zero drift calibration	Same AF_oF1 Note: when performing this function, the servo must be in the off enable state, otherwise the finsh flashing page will not appear, and the automatic calibration cannot be completed
6	AF_En0	Absolute encoder fault clearing	 Press the M button in the action panel to switch to auxiliary mode AF, press the Up / Down button to AF, press ENT button to display CLC. Err. Long press ENT button until finsh flashes, that is, complete absolute encoder troubleshooting. Press the M button to exit the mode.
7	AF_En1	Absolute value	1. Press the M button in the action panel to switch to auxiliary mode

		encoder	AF, press the Up / Down button to AF, press ENT button to display
		multi-turn	CLC. Ash.
		value resetting	2. Long press ENT key until finsh flashes, that is, complete absolute
			encoder multi-turn value resetting.
			3. Press the M button to exit the mode.
8	AF_ini	recover to factory setup	Contact with factory
9	AF_Err	The failure records display	 Press the M button in the operations panel to switch to auxiliary mode AF, operate the Up / Down button to AF, press ENT button to display the past 8 historical failure information. The left Digit 0 represents the last failure Press the Up button to display the past failures one by one. Long press ENT button, can show the time of failure, time coordinates reference D 25. Tie.
			 Press the M button to exit the mode. Note: A fault that occurs during multiple ups and downs in 30 minutes may have a recording time deviation of 30 minutes.
			1. Press the M button of the operation panel to switch to auxiliary
10	AF_uEr	Version	mode AF, operate the Up / Down button to AF, press ENT button to
		display	display the SERVO information.
			2. Press the M button to exit the mode.
11	AF_unL	Operation Permission Setting	 Press the M button of the action panel to switch to the auxiliary mode AF, operate the Up / Down button to AF, press the ENT button to edit the action permissions. 0: The parameters are all locked, can not be changed; 1: The P00-XX parameters are locked, other can be changed; 2: No Lock, can be changed. Set 0,1 value, power down to save. Set 2, power off do not save. Press the M button to exit the mode.
			1. Press the ${\sf M}$ button of the action panel to switch to the auxiliary
12	AF_ Io	Forced output port level	mode AF, operate the Up / Down button to AF, press the ENT button to edit.2. Press the M button to exit the mode. The output port reverts to its original output state.
13	AF_J-L	Load inertia ratio measurement	 Press the M key on the operation panel, switch to the auxiliary mode AF - XXX, operate the up / down key to AF_J-L, and press the ENT key to measure the inertia ratio. Long press up key or down key, the motor will run back and forth

	according to the maximum speed set by p08-02, acceleration and
	deceleration time set by p08-03, waiting time set by p08-04, and
	turns set by p08-05 until the load inertia ratio appears.
	3. Press the M key to exit the mode.
	4. Record the measured value and write it into p01-04 (moment of
	inertia ratio) parameter

Chapter 9 Fault Analysis and Treatment

Alarm Type	Alarm Code	Alarm content	
	AL.051	Eeprom parameter abnormal	
	AL.052	Programmable Logic configuration fault	
	AL.053 Initialization Failed		
	AL.054	System abnormal	
	AL.060	Product model Select fault	
	AL.061	Product matching fault	
	AL.062	Parameter storage fault	
	AL.063	over current checkout	
	AL.064	Servo power on 🥠 Self-Test find out the output short circuit fault	
Usedus a Fault	AL.065	servo unit built-in Fan stop	
Hardware Fault	AL.066	servo unit control power supply low voltage	
	AL.070	AD Sample fault1	
	AL.071	Current sample fault	
	AL.100	Parametric combination abnormal	
	AL.101	AI Setting fault	
	AL.102	DI distributing fault	
	AL.105	Electronic gear Configuration error	
	AL.106	Frequency splitting pulse output Setting abnormal	
	AL.110	Need to power-on again after the parameter setting	
	AL.120	Servo ON Instruction invalid	
	AL.401	Under voltage	
	AL.402	Over voltage	
	AL.410	Overload (instantaneous Maximum load)	
	AL.411	Drive overload	
Operational	AL.412	Motor overload (Continuous maximum load)	
Faults	AL.420	Over speed	
	AL.421	Lose Control check out	
	AL.422	runaway fault	
	AL.423	Inconsistent speed alarm	

9.1 Failure alarm information list

	AL.425	over voltage while AI sampling		
	AL.430	Regeneration of Abnormal		
	AL.431	Regeneration of overload		
	AL.432	Regeneration of Short circuit Open circuit		
Operational	AL.435	Stroke current Limited overload resistance		
Faults	AL.436	DB overload		
	AL.440	Radiator overheat		
	AL.441	Motor overheat fault		
	AL.500	Output frequency division over speed		
	AL.501	Position deviation is too large		
	AL 502	Full closed loop encoder position and Motor position error are too		
	AL.302	large		
	AL.505	Pulse Command input pulse abnormal		
	AL.510	Gantry synchronization deviation deviation is large		
	AL.550	Inertia identification failure fault		
	AL.551	back to origin Point timeout fault		
	AL.552	Angle Identification failure fault		
	AL.600	Encoder output power short circuit fault		
	AL.610	Incremental encoder gets out of line		
	AL.611	Incremental encoder Z signal loss		
	AL.620	Absolute Encoder gets out of line		
	AL.621	Read and write motor encoder EEPROM parameter abnormal		
	AL.622	motor encoder EEPROM data parity error		
	AL.640	Absolute encoder overspeed		
	AL.641	Absolute encoder overheat		
Encodor Fault	AL.643	Absolute encoder Battery low voltage fault		
Encoderradit	AL.644	Absolute encoder multi-turn fault		
	AL.645	Absolute encoder multi-turn overflow fault		
	AL.646	Absolute encoder communication error 1		
	AL.647	Absolute encoder count error 2		
	AL.648	Absolute encoder communication error 3		
	AL.649	Absolute encoder communication error 4		
	AL.650	Absolute encoder communication error 5		
	AL.651	Absolute encoder communication error 6		
	AL.652	Absolute encoder multi-turn Multiple faults		

	AL.900	Location deviation is too large
	AL.901	When servo ON, Location deviation is too large
	AL.910	Motor overload
	AL.912	Drive overload
	AL.920	Regeneration of overload
	AL.921	DB overload
	AL.925	External regeneration bleeder resistor is too small
	AL.930	Absolute encoder's battery Fault
Warning	AL.941	Need to power-on again after Parameters changing
	AL.942	Write EEPROM frequent warnings
	AL.943	Abnormal serial communication
	AL.950	Over run Warning
	AL.951	Absolute encoder angle initialization warning
	AL.971	Under voltage warning
	AL.990	Radiator overheat warning
	AL.991	Input phase loss warning

9.2 Cause and treatment of fault alarm

AL.051: EEPROM parameter abnormal

Causes of fault alarm	Fault alarm checking	Disposal measures
servo unit EEPROM data	Check connection	Correct connection, reconnect
abnormal		power, If always appear, then
		change a drive

AL.052: Programmable logical configuration fault

Causes of fault alarm	Fault alarm checking	Disposal measures
Master control MCU power-on	Check connections, Check the baud	Reduce the baud rate of Serial
initialization exception, Serial port	rate of serial communication	Communication, If always appear,
baud rate setting is too high	parameters P00-21	then change a drive

AL.053: Initialization Failed

Causes of fault alarm	Fault alarm checking	Disposal measures
Master control MCU power-on	check connections	If always appear, then change a
initialization failed	reconnect power	drive

AL.054: System error

Causes of fault alarm	Fault alarm checking	Disposal measures
Master control MCU operation	check connections	If always appear, then change a
abnormal	reconnect power	drive

AL.060: Product model selection fault

Causes of fault alarm	Fault alarm checking	Disposal measures
Product parameter setting does	Detect whether the servo unit can	Set product parameters correctly
not	support the mtor	If always appear, then contact the
match the actual hardware		manufacturer
The drive power does not match	The rated current of the selected	Use the matching motor and
the motor power	motor is greater than or much less	driver units
	than the output current of the	
	driver	

AL.061: Products matching fault

Causes of fault alarm	Fault alarm checking	Disposal measures
servo unit and servo motor does	Detect whether the servo unit can	Replace the matching motor and
not	support the motor	servo units
match		

AL.063: Overcurrent detection

Causes of fault alarm	Fault alarm checking	Disposal measures
Short circuit between U,V and W	U,V,W wiring whether is short	Correct connection, If always
	circuit	appear, then change a drive
Drive damage	Disconnect the U,V, and W	If the connection of U,V and W is
	connections on the drive enabling	disconnected and the start driver
	the drive	still alarms, the driver will be
		replaced

AL.066: Servo Unit controls the power supply voltage is low

Causes of fault alarm	Fault alarm checking	Disposal measures
Control power supply L,N power	check connections Measure L, N,	Correct connection, If always
voltage is too low	whether the voltage is lower than	appear, then change a drive
	140VAC	

AL.071: Current collect sample fault

Causes of fault alarm	Fault alarm checking	Disposal measures
abnormal collect sample data in	check connections whether is	Correct connection, If always
current sensor	correct	appear, then change a drive

AL.100: Parameter combination anomaly

Causes of fault alarm	Fault alarm checking	Disposal measures
Parameter setting error	Check the set (p03-07) parameters	Set parameters correctly
		If it always appears, initialize the
		parameter

AL.102: DI distribution fault

Causes of fault alarm	Fault alarm checking	Disposal measures
Set parameters correctly	Check input port function selection	Set parameters correctly
At least two input ports have the	parameters (p06-01, p06-03,	The drive is recharged
same selection of functionality	p06-05)	

AL.105: Electronic gear setting error

Causes of fault alarm	Fault alarm checking	Disposal measures
Electronic gear ratio setting error	Check electronic gear ratio setting	Set the electronic gear ratio
	parameters.P03-10, P03-11	correctly
Gantry output pulse set too small	Check the feedback pulse number	Set the feedback pulse number of
	of the gantry motor for one turn:	the gantry motor for one turn
	p03-52 must be greater than 128	

AL.106: Frequency division pulse output setting is abnormal

Causes of fault alarm	Fault alarm checking	Disposal measures
The output parameters of	Check the setting parameters of	Set the output parameters of
frequency division pulse are set	frequency division pulse output.	frequency division pulse correctly
out of range	P03-22, p03-23, p03-25	Incremental encoder p03-22 ≤
		p03-23
		Bus encoder p03-25 <65535
		The drive is recharged

AL.110: The power should be recharged after the parameters are set

Causes of fault alarm	Fault alarm checking	Disposal measures
After setting the servo	The drive is recharged	The drive is recharged

parameters, it shall be powered	
on again to take effect	

AL.120: Servo ON command invalid alarm

Causes of fault alarm	Fault alarm checking	Disposal measures
When the servo is ON, the power	Check wiring and input voltage	Check wiring and input voltage
supply input ports R, S and T are		
not powered		
not powered		

AL.401: Under voltage

Causes of fault alarm	Fault alarm checking	Disposal measures
Main circuit input voltage lower	Check whether the input R,S and T	Ensure proper wiring, use correct
than rated voltage value or no	of the main circuit is correct and	voltage source or series regulator
input voltage	what the voltage value is. The bus	
	voltage can be monitored through	
	d23.dcp	

AL.402 Over voltage

Causes of fault alarm	Fault alarm checking	Disposal measures
The input voltage of the main	Test the input voltage of the main	Use the correct voltage source or
circuit is higher than the rated	circuit with a voltmeter	tandem regulator
voltage		
Driver hardware failure	When the input voltage is	Please send it back to distributor or
	confirmed to be correct, the	original factory for maintenance
	overvoltage alarm still remains	
No regenerated resistance or	Verify that p00-30 is set to 0 or 1	Correct setting and external
regenerated resistance is not		regenerative resistance
selected correctly		

AL.410: Overload (instantaneous maximum load)

Causes of fault alarm	Fault alarm checking	Disposal measures
The machine is stuck when the	Check if mechanical connection is	Adjusting mechanical structure
motor starts	jammed	
Driver hardware failure	Confirm that the mechanical part is	Please send it back to distributor or
	still alarming normally	original factory for maintenanc

AL.412: Motor overload (continuous maximum load)

Causes of fault alarm	Fault alarm checking	Disposal measures

Continuous use beyond the rated	Monitoring can be done through	Switch to a higher power motor or
load of the drive	d13.ol. In monitoring mode	lower load
Improper parameter setting of	1. Whether the mechanical system	1. Adjust the gain of the control
control system	is installed	Іоор
	2. Set the acceleration constant too	2. Acceleration and deceleration
	fast	setting time slows down
	3. Whether the parameters of gain	
	class are set correctly	
Motor connection error	Check U, V and W wiring	Correct connection

AL.420 Over speed

Causes of fault alarm	Fault alarm checking	Disposal measures
Input speed command too high	Use the signal detector to check if	Adjust the frequency of the input
	the incoming signal is normal	signal
Incorrect setting of overspeed	Test whether p04-05 (overspeed	Set p04-05 (overspeed alarm
judgment parameters	alarm value) is set reasonably	value) correctly

AL.421: Out of control check out

Causes of fault alarm	Fault alarm checking	Disposal measures
Motor power line U,V,W wiring	Check the connection and adjust	Correct connection
error	the frequency of the input signal	
Motor parameters are not set	Check P00-05;And encoder	Set parameters correctl In torque
correctly	parameter setting is correct or not	mode, set p01-40 to 0 to turn off
		the out-of-control check out
		function

AL.423 Inconsistent speed alarm

Causes of fault alarm	Fault alarm checking	Disposal measures
Motor power line U,V,W wiring	Check the wiring	correct the wiring
error		
Motor parameters are not set	Check whether p00-46 / p04-12	set parameters correctly
correctly	Settings are reasonable	

AL.430: Abnormal regeneration

Causes of fault alarm	Fault alarm checking	Disposal measures
The regenerative resistance is	Check the connection status of the	If the connection is normal, please

wrong or not connected to the	regenerated resistance	return the drive to the factory for
external regenerative resistance		maintenance
Parameter setting error	Please confirm the parameter	Set parameter values correctly
	Settings for p00-30, p00-31 and	
	p00-32	

AL.431: Regeneration of overload

Causes of fault alarm	Fault alarm checking	Disposal measures
The regenerative resistance is	Check the connection status of the	Select the appropriate
wrong or not connected to the	regenerated resistance and	regenerative resistance
external regenerative resistance	whether the regenerated resistance	
	value and power are suitable	

AL.432: Regenerative short circuit, open circuit

Causes of fault alarm	Fault alarm checking	Disposal measures
Regenerative short circuit	Check port B1/B3 for short circuit	If there is no short circuit in B1/B3
		and the alarm still appears, please
		return the driver to the factory for
		maintenance
Regenerative open circuit	Please confirm the parameter	Set parameter values correctly
	Settings for p00-30, p00-31 and	
	p00-32	

AL.440: Radiator overheating

Causes of fault alarm	Fault alarm checking	Disposal measures
The internal temperature of the	Check whether the heat dissipation	Improve the heat dissipation
drive is above 95 $^\circ \!\!\! \mathbb{C}$	condition of the drive is good	condition of the drive. If the alarm
		still appears, please return the
		drive to the factory for
		maintenance

AL.501: Excessive position deviation

Causes of fault alarm	Fault alarm checking	Disposal measures
Position deviation is too large and	Confirm p03-15 (position deviation	Increase the set value of p03-15
parameter setting is too small	is too large) parameter setting	(position deviation is too large)
The gain value is set too low	Confirm whether the gain class	Re-adjust the gain class parameters
	parameters are properly set	correctly

Internal torque limiter is set too	Confirm internal torque limiter	Re-adjust the internal torque
small		limiter correctly
Excessive external load	Check external load	Load reduction or high power
		motor replacement

AL.505: P Command input pulse exception

Causes of fault alarm	Fault alarm checking	Disposal measures
The pulse command frequency is	Use the pulse frequency meter to	Set the input pulse frequency
higher than the rated input	detect if the input frequency is	correctly
frequency	higher than the rated input	
	frequency	

AL.551: Back to the origin timeout failure

Causes of fault alarm	Fault alarm checking	Disposal measures
The operation back to the origin is	Confirm whether the parameter	Set p03-68 correctly
timed out	p03-68 (maximum time limit for	
	searching origin) is reasonable	

AL.600: Short circuit fault of encoder output power supply

Causes of fault alarm	Fault alarm checking	Disposal measures
Encoder power connection error	Check whether the encoder power	Correct connection
	supply +5V and GND are connected	
	in reverse	

AL.610: Delta encoder off-line

Causes of fault alarm	Fault alarm checking	Disposal measures
Delta encoder HallU, HallV, HallW	Check the encoder wiring	Correct connection
signal exception		

AL.620: Bus encoder off line

Causes of fault alarm	Fault alarm checking	Disposal measures
Bus encoder communication	Check the encoder wiring	Correct connection
failed		

AL.621: Read/write motor encoder EEPROM parameters are abnormal

Causes of fault alarm	Fault alarm checking	Disposal measures
Encoder read and write exception	Check the encoder wiring,	Correct connection

AL.640: Bus encoder overspeed

Causes of fault alarm	Fault alarm checking	Disposal measures
Bus encoder speed value is more	Check the encoder wiring	Reduce the speed
than 6000rpm	Make sure the encoder shield wire	If the connection is normal, please
	is properly connected	return the drive to the factory for
		maintenance

AL.643: Bus encoder battery failure

Causes of fault alarm	Fault alarm checking	Disposal measures
When the bus encoder is set to	Check the external battery voltage	When the battery voltage is lower
multi-coil absolute value, the	of the encoder and confirm that it is	than 3.0V, replace the battery,
external battery voltage is low	higher than 3.0v	For higher than 3V, use the
		auxiliary function AF_En0 to clear
		the alarm

AL.645: ModBus encoder multi-loop overflow fault

Causes of fault alarm	Fault alarm checking	Disposal measures
The number of turns of the bus	The winding number can be	Clear multiple values using the
encoder is out of range	monitored through the monitoring	directive AF_En1
	mode d21.ash. The multi-turn	
	absolute motor cannot turn in one	
	direction for a long time.	

AL.647: Bus-type encoder counts exceptions

Causes of fault alarm	Fault alarm checking	Disposal measures
Split-type encoder installation	Check the encoder	Install the encoder correctly
position deviation is large		

AL.930: Absolute value encoder battery failure

Causes of fault alarm	Fault alarm checking	Disposal measures
Absolute value encoder battery	Check the external battery voltage	The battery voltage is lower than

failure	of the encoder and confirm that it is	3.0v. Replace the battery
	higher than 3.0v	Use the command AF_En0 to clear
		the alarm when it is higher

AL.941: Parameter change requires power outage and restart to take effect

Causes of fault alarm	Fault alarm checking	Disposal measures
After modifying the parameters,		Power to restart
the parameters shall take effect		
after repowering		

AL943: Abnormal serial communication

Causes of fault alarm	Fault alarm checking	Disposal measures
Serial communication	Check the wiring	Add a filter to the wire
interference	Check the baud rate parameter	Reduce the baud rate of serial
The serial port baud rate is set too	p00-21 for serial communication	communication
high		

Chapter 10 Communication Settings

10.1 Modbus communication parameter setting

Para Code	Name	Description		
P00-23	Slave address	setting range: 0-255, default 1 Set according to the equipment requirements		
P00-24	Modbus communication baud rate	setting range: 0-7, default 2 0: 1: 4800 2: 9600 3: 19200 4: 38400	2400 5: 57600 6: 115200 7: 25600	

Just motion control

P00-25	check mode	setting range: 0-3, default 1 0: no parity, 2 stop bits 1: even parity, 1 stop bit 2: odd parity, 1 stop bit 3: no parity, 1 stop bit
P00-26	Modbus Communication response delay	Setting range: 0-100, default 0 When the parameter is set to 0, the response is conducted according to the standard communication. When the parameter is set to value, the response time of Modbus communication is conducted according to the set time

10.2 Modbus communication support read and write parameter

settings

Supports writing to parameter lists

Address	Address	address	address	Remark
Parameter	decimail	Hexadecimal	Octanory	
number				
P03-09	309	135	465	Number of command
				pulses for motor
				rotation
P03-10	310	136	466	Electronic gear
				molecules
P03-11	311	137	467	The electronic gear denominator
P05-03	280	118	430	The digital torque is given
P05-02	366	16E	556	Torque mode speed limiter given
				value
Eeprom data	2050	802	4002	data to be written
				Address: 0-11bit
Eeprom control	2051	803	4003	12 bit for 1 when the

		write operation
		The first 13 bits are 1
		for the read operation

Note: the above written parameters are only temporarily modified and will not be saved after power failure

Support for reading parameter lists

Address	Address	Address	Address	Remark
Parameter	decimail	Hexadecima	Octanory	
number				
P03-09	309	135	465	Number of command pulses for
				motor rotation
P03-10	310	136	466	Electronic gear molecules
P03-11	311	137	467	The electronic gear denominator
P03-12	312	138	470	High position of electronic gears
Eeprom reads				
data	2050	802	4002	read data
Eeprom reads address	2051	803	4003	data corresponding to address
Position	2106/2107	83A/83B	4072/4073	Address 2106 is 16 bits high
reference				Address 2107 is the lower 16 bits
Position	2108/2109	83C/83D	4074/4075	Address 2108 is the upper 16 bits
feedback value				Address 2109 is the lower 16 bits
Position	2110/2111	83E/83F	4076/4077	Address 2110 is the upper 16 bits
deviation value				Address 2111 is the lower 16 bits
Speed control	2113	841	4101	Umin: 1rpm/min
command				
Motor running	2114	842	4102	Unit: 1rpm / min
speed				
Torque	2115	843	4103	Unit: 0.1%
command				
Torque	2116	844	4104	Unit: 0.1%
feedback value				
Overload load	2117	845	4105	Unit: 0.1%

rate				
Peak Torque	2118	846	4106	Unit: 0.1%
Regeneration overload	2120	848	4110	Unit: 0.1%
rate				
Port status	2121	849	4111	read into the value, converted to
				16-bit binary: low 8 for the input
				port state, the middle 5-bit for the
				output port state, high 3-bit HAL
				state
Motor mechanical angle	2123	84B	4113	Unit: 0.1 degree
Position	2125/2126	84D/84E	4115/4116	Front High Low:
feedback value				High for laps
(Absolute Data)				Low for lap, 65536BIT per turn
Main circuit	2128	850	4120	Unit:V
voltage				
Speed loop analog	2133	855	4125	Unit:0.01V
voltage value				
Torque loop analog	2134	856	4126	Unit:0.01V
voltage value				

External command digital reference list

Instruction	address	address	address	Renark
address	Decimal	Hexadecimal	Octanory	
Control mode				
Position loop	2003/2004	7D3/7D4	3723/3724	maximum support 2 ^ 32
digital given				digital reference
				Decimal value 131072 = 1
				turn
Speed loop	2002	7D2	3722	speed (rpm) = 10 decimal
digital reference				value / 5
Torque ring digital	280	118	430	Torque = decimal value %

quantity is given				
Torque ring speed	366	16E	556	Rotational speed (RPM) = base 10
digital quantity is given				value

Chapter 11 Special Function Instructions

11.1 Absolute encoder is used

11.1.1 Functional description

Using the servo motor with the absolute value encoder, the absolute value detection system can be built by the upper device. Through the absolute value of the detection system, you do not have to reset the origin every time the power supply. This function is based on MODBUS communication to read the absolute encoder winding number and position data, and the upper device processes and controls the absolute encoder related functions.

11.1.2 Based on MODBUS communication servo basic Settings and instructions.

When the system using absolute value encoder is put into use, it needs to initialize the rotation number data (af-en1 absolute value encoder multi-turn value zeroing). Thus, an alarm related to the absolute value encoder occurs when initialization is required, such as first switching on the power. By setting (initializing) the absolute value encoder, the alarm associated with the absolute value encoder is cleared after initializing the number of turns.

Para Code	Name	Description
P00-23	From the station address	Set range: 0-255, default 1 Set according to equipment requirements
P00-24	Modbus Communication baud rate	Set range: 0-7, default 20: 2400 1: 4800 2: 9600 3: 19200 4: 38400

		5: 57600
		6: 115200
		7: 25600
		Set range: 0-3, default 0
		0: no check, 2 stop bits
P00-25	Check way	1: parity, 1 stop bit
		2: odd check, 1 stop bit
		3: no check, 1 stop bit
		Set range: 0-1, default 0,
P00-29		Read the absolute position value 84D/84E through 485
	Modbus Absolute encoder	0:84d is the value of the circle, and 84E is the value of the
	feedback format	single circle
		1:84d is the value of a single turn, and 84E is the value of a
		turn

11.1.3 Based on MODBUS communication absolute data address

Address	Address:	address	address:	Remark
Parameter	Decimal	Hexadecimal	Octal notes	
number				
Position	2125/2126	84D/84E	4115/4116	Front High
feedback value				Low: High
(Absolute				Turn
Data)				Low for lap,
				65536BIT per turn 36BIT

11.1.4 Absolute encoder related alarm processing

Alarm	Fault alarm cause	Fault alarm check	The disposal measures
code			
AL.640	Bus Encoder Overspeed	Initial use occurs	by AF-EN0 (see chapter 8.4) Clear
			alarm
AL.643	When the bus	Check the encoder	clear the alarm via

Just motion control

	encoder is set to	external battery	AF-ENO (see chapter
	multi-turn absolute	voltage, confirm	8.4)
	value, the external	that the battery is	
	battery voltage is	replaced by more	
	low	than 3.0V	
AL.644	Read multi-turn data	Check d21.ASH	clear the multi-turn
AL.645	abnormality, or	(see chapter 8.3)	data by AF-EN1 (see
	multi-turn data	Multi-turn values	chapter 8.4)
	greater than 32767	If the	
		multi-turn value is	
		greater than 32767	
AL.930	Absolute Encoder	Check Encoder	clear the alarm via
	Battery Fault	External Battery	AF-EN0 (see Chapter
		Voltage Replace the battery	8.4)

11.1.5 Absolute encoder battery replacement

In case of any of the following drivers, please replace the battery to avoid loss of absolute position data.

1. When the drive displays AL.930, it represents the battery voltage depression warning. The battery must be replaced in time to avoid the loss of the motor's absolute position data

2. When the drive displays AL.643, it indicates the low battery voltage alarm. When the alarm occurs, the motor winding number data cannot be recorded normally, so the battery must be replaced immediately. After the battery is replaced, the auxiliary function af-en0 shall be used to alarm and clear after the battery is replaced, and the origin of the equipment shall be checked at the same time. At the same time, the auxiliary function is used to reset the multi-turn data of the motor

Note: it is recommended to replace the battery when the drive is energized to avoid the loss of absolute position data